Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfof Structured version   Visualization version   Unicode version

Theorem sibfof 29246
Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b  |-  B  =  ( Base `  W
)
sitgval.j  |-  J  =  ( TopOpen `  W )
sitgval.s  |-  S  =  (sigaGen `  J )
sitgval.0  |-  .0.  =  ( 0g `  W )
sitgval.x  |-  .x.  =  ( .s `  W )
sitgval.h  |-  H  =  (RRHom `  (Scalar `  W
) )
sitgval.1  |-  ( ph  ->  W  e.  V )
sitgval.2  |-  ( ph  ->  M  e.  U. ran measures )
sibfmbl.1  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
sibfof.c  |-  C  =  ( Base `  K
)
sibfof.0  |-  ( ph  ->  W  e.  TopSp )
sibfof.1  |-  ( ph  ->  .+  : ( B  X.  B ) --> C )
sibfof.2  |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )
sibfof.3  |-  ( ph  ->  K  e.  TopSp )
sibfof.4  |-  ( ph  ->  J  e.  Fre )
sibfof.5  |-  ( ph  ->  (  .0.  .+  .0.  )  =  ( 0g `  K ) )
Assertion
Ref Expression
sibfof  |-  ( ph  ->  ( F  oF  .+  G )  e. 
dom  ( Ksitg M
) )

Proof of Theorem sibfof
Dummy variables  x  y  z  b  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sibfof.1 . . . . . . . 8  |-  ( ph  ->  .+  : ( B  X.  B ) --> C )
2 sibfof.0 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  TopSp )
3 sitgval.b . . . . . . . . . . . 12  |-  B  =  ( Base `  W
)
4 sitgval.j . . . . . . . . . . . 12  |-  J  =  ( TopOpen `  W )
53, 4tpsuni 20030 . . . . . . . . . . 11  |-  ( W  e.  TopSp  ->  B  =  U. J )
62, 5syl 17 . . . . . . . . . 10  |-  ( ph  ->  B  =  U. J
)
76sqxpeqd 4865 . . . . . . . . 9  |-  ( ph  ->  ( B  X.  B
)  =  ( U. J  X.  U. J ) )
87feq2d 5725 . . . . . . . 8  |-  ( ph  ->  (  .+  : ( B  X.  B ) --> C  <->  .+  : ( U. J  X.  U. J ) --> C ) )
91, 8mpbid 215 . . . . . . 7  |-  ( ph  ->  .+  : ( U. J  X.  U. J ) --> C )
109fovrnda 6459 . . . . . 6  |-  ( (
ph  /\  ( z  e.  U. J  /\  x  e.  U. J ) )  ->  ( z  .+  x )  e.  C
)
11 sitgval.s . . . . . . 7  |-  S  =  (sigaGen `  J )
12 sitgval.0 . . . . . . 7  |-  .0.  =  ( 0g `  W )
13 sitgval.x . . . . . . 7  |-  .x.  =  ( .s `  W )
14 sitgval.h . . . . . . 7  |-  H  =  (RRHom `  (Scalar `  W
) )
15 sitgval.1 . . . . . . 7  |-  ( ph  ->  W  e.  V )
16 sitgval.2 . . . . . . 7  |-  ( ph  ->  M  e.  U. ran measures )
17 sibfmbl.1 . . . . . . 7  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
183, 4, 11, 12, 13, 14, 15, 16, 17sibff 29242 . . . . . 6  |-  ( ph  ->  F : U. dom  M --> U. J )
19 sibfof.2 . . . . . . 7  |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )
203, 4, 11, 12, 13, 14, 15, 16, 19sibff 29242 . . . . . 6  |-  ( ph  ->  G : U. dom  M --> U. J )
21 dmexg 6743 . . . . . . 7  |-  ( M  e.  U. ran measures  ->  dom  M  e.  _V )
22 uniexg 6607 . . . . . . 7  |-  ( dom 
M  e.  _V  ->  U.
dom  M  e.  _V )
2316, 21, 223syl 18 . . . . . 6  |-  ( ph  ->  U. dom  M  e. 
_V )
24 inidm 3632 . . . . . 6  |-  ( U. dom  M  i^i  U. dom  M )  =  U. dom  M
2510, 18, 20, 23, 23, 24off 6565 . . . . 5  |-  ( ph  ->  ( F  oF  .+  G ) : U. dom  M --> C )
26 sibfof.3 . . . . . . . 8  |-  ( ph  ->  K  e.  TopSp )
27 sibfof.c . . . . . . . . 9  |-  C  =  ( Base `  K
)
28 eqid 2471 . . . . . . . . 9  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
2927, 28tpsuni 20030 . . . . . . . 8  |-  ( K  e.  TopSp  ->  C  =  U. ( TopOpen `  K )
)
3026, 29syl 17 . . . . . . 7  |-  ( ph  ->  C  =  U. ( TopOpen
`  K ) )
31 fvex 5889 . . . . . . . 8  |-  ( TopOpen `  K )  e.  _V
32 unisg 29039 . . . . . . . 8  |-  ( (
TopOpen `  K )  e. 
_V  ->  U. (sigaGen `  ( TopOpen
`  K ) )  =  U. ( TopOpen `  K ) )
3331, 32ax-mp 5 . . . . . . 7  |-  U. (sigaGen `  ( TopOpen `  K )
)  =  U. ( TopOpen
`  K )
3430, 33syl6eqr 2523 . . . . . 6  |-  ( ph  ->  C  =  U. (sigaGen `  ( TopOpen `  K )
) )
3534feq3d 5726 . . . . 5  |-  ( ph  ->  ( ( F  oF  .+  G ) : U. dom  M --> C  <->  ( F  oF  .+  G ) : U. dom  M --> U. (sigaGen `  ( TopOpen `  K
) ) ) )
3625, 35mpbid 215 . . . 4  |-  ( ph  ->  ( F  oF  .+  G ) : U. dom  M --> U. (sigaGen `  ( TopOpen `  K )
) )
3731a1i 11 . . . . . . 7  |-  ( ph  ->  ( TopOpen `  K )  e.  _V )
3837sgsiga 29038 . . . . . 6  |-  ( ph  ->  (sigaGen `  ( TopOpen `  K
) )  e.  U. ran sigAlgebra )
39 uniexg 6607 . . . . . 6  |-  ( (sigaGen `  ( TopOpen `  K )
)  e.  U. ran sigAlgebra  ->  U. (sigaGen `  ( TopOpen `  K
) )  e.  _V )
4038, 39syl 17 . . . . 5  |-  ( ph  ->  U. (sigaGen `  ( TopOpen
`  K ) )  e.  _V )
4140, 23elmapd 7504 . . . 4  |-  ( ph  ->  ( ( F  oF  .+  G )  e.  ( U. (sigaGen `  ( TopOpen
`  K ) )  ^m  U. dom  M
)  <->  ( F  oF  .+  G ) : U. dom  M --> U. (sigaGen `  ( TopOpen `  K )
) ) )
4236, 41mpbird 240 . . 3  |-  ( ph  ->  ( F  oF  .+  G )  e.  ( U. (sigaGen `  ( TopOpen
`  K ) )  ^m  U. dom  M
) )
43 inundif 3836 . . . . . . 7  |-  ( ( b  i^i  ran  ( F  oF  .+  G
) )  u.  (
b  \  ran  ( F  oF  .+  G
) ) )  =  b
4443imaeq2i 5172 . . . . . 6  |-  ( `' ( F  oF  .+  G ) "
( ( b  i^i 
ran  ( F  oF  .+  G ) )  u.  ( b  \  ran  ( F  oF  .+  G ) ) ) )  =  ( `' ( F  oF  .+  G ) "
b )
45 ffun 5742 . . . . . . . 8  |-  ( ( F  oF  .+  G ) : U. dom  M --> C  ->  Fun  ( F  oF  .+  G ) )
46 unpreima 6021 . . . . . . . 8  |-  ( Fun  ( F  oF  .+  G )  -> 
( `' ( F  oF  .+  G
) " ( ( b  i^i  ran  ( F  oF  .+  G
) )  u.  (
b  \  ran  ( F  oF  .+  G
) ) ) )  =  ( ( `' ( F  oF  .+  G ) "
( b  i^i  ran  ( F  oF  .+  G ) ) )  u.  ( `' ( F  oF  .+  G ) " (
b  \  ran  ( F  oF  .+  G
) ) ) ) )
4725, 45, 463syl 18 . . . . . . 7  |-  ( ph  ->  ( `' ( F  oF  .+  G
) " ( ( b  i^i  ran  ( F  oF  .+  G
) )  u.  (
b  \  ran  ( F  oF  .+  G
) ) ) )  =  ( ( `' ( F  oF  .+  G ) "
( b  i^i  ran  ( F  oF  .+  G ) ) )  u.  ( `' ( F  oF  .+  G ) " (
b  \  ran  ( F  oF  .+  G
) ) ) ) )
4847adantr 472 . . . . . 6  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  -> 
( `' ( F  oF  .+  G
) " ( ( b  i^i  ran  ( F  oF  .+  G
) )  u.  (
b  \  ran  ( F  oF  .+  G
) ) ) )  =  ( ( `' ( F  oF  .+  G ) "
( b  i^i  ran  ( F  oF  .+  G ) ) )  u.  ( `' ( F  oF  .+  G ) " (
b  \  ran  ( F  oF  .+  G
) ) ) ) )
4944, 48syl5eqr 2519 . . . . 5  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  -> 
( `' ( F  oF  .+  G
) " b )  =  ( ( `' ( F  oF  .+  G ) "
( b  i^i  ran  ( F  oF  .+  G ) ) )  u.  ( `' ( F  oF  .+  G ) " (
b  \  ran  ( F  oF  .+  G
) ) ) ) )
50 dmmeas 29097 . . . . . . . 8  |-  ( M  e.  U. ran measures  ->  dom  M  e.  U. ran sigAlgebra )
5116, 50syl 17 . . . . . . 7  |-  ( ph  ->  dom  M  e.  U. ran sigAlgebra )
5251adantr 472 . . . . . 6  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  ->  dom  M  e.  U. ran sigAlgebra )
53 imaiun 6168 . . . . . . . 8  |-  ( `' ( F  oF  .+  G ) " U_ z  e.  (
b  i^i  ran  ( F  oF  .+  G
) ) { z } )  =  U_ z  e.  ( b  i^i  ran  ( F  oF  .+  G ) ) ( `' ( F  oF  .+  G
) " { z } )
54 iunid 4324 . . . . . . . . 9  |-  U_ z  e.  ( b  i^i  ran  ( F  oF  .+  G ) ) { z }  =  ( b  i^i  ran  ( F  oF  .+  G
) )
5554imaeq2i 5172 . . . . . . . 8  |-  ( `' ( F  oF  .+  G ) " U_ z  e.  (
b  i^i  ran  ( F  oF  .+  G
) ) { z } )  =  ( `' ( F  oF  .+  G ) "
( b  i^i  ran  ( F  oF  .+  G ) ) )
5653, 55eqtr3i 2495 . . . . . . 7  |-  U_ z  e.  ( b  i^i  ran  ( F  oF  .+  G ) ) ( `' ( F  oF  .+  G ) " { z } )  =  ( `' ( F  oF  .+  G ) " (
b  i^i  ran  ( F  oF  .+  G
) ) )
57 inss2 3644 . . . . . . . . . 10  |-  ( b  i^i  ran  ( F  oF  .+  G ) )  C_  ran  ( F  oF  .+  G
)
586feq3d 5726 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F : U. dom  M --> B  <->  F : U. dom  M --> U. J
) )
5918, 58mpbird 240 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : U. dom  M --> B )
606feq3d 5726 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G : U. dom  M --> B  <->  G : U. dom  M --> U. J
) )
6120, 60mpbird 240 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : U. dom  M --> B )
62 ffn 5739 . . . . . . . . . . . . . . 15  |-  (  .+  : ( B  X.  B ) --> C  ->  .+  Fn  ( B  X.  B ) )
631, 62syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  .+  Fn  ( B  X.  B ) )
6459, 61, 23, 63ofpreima2 28344 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( F  oF  .+  G
) " { z } )  =  U_ p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
6564adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ran  ( F  oF  .+  G ) )  ->  ( `' ( F  oF  .+  G ) " {
z } )  = 
U_ p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )
6651adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ran  ( F  oF  .+  G ) )  ->  dom  M  e.  U.
ran sigAlgebra )
6751ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  ran  ( F  oF  .+  G ) )  /\  p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  dom  M  e.  U.
ran sigAlgebra )
68 simpll 768 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  ran  ( F  oF  .+  G ) )  /\  p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ph )
69 inss1 3643 . . . . . . . . . . . . . . . . . 18  |-  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G
) )  C_  ( `'  .+  " { z } )
70 cnvimass 5194 . . . . . . . . . . . . . . . . . . . 20  |-  ( `' 
.+  " { z } )  C_  dom  .+
71 fdm 5745 . . . . . . . . . . . . . . . . . . . . 21  |-  (  .+  : ( B  X.  B ) --> C  ->  dom  .+  =  ( B  X.  B ) )
721, 71syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  .+  =  ( B  X.  B ) )
7370, 72syl5sseq 3466 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( `'  .+  " {
z } )  C_  ( B  X.  B
) )
7473adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ran  ( F  oF  .+  G ) )  ->  ( `'  .+  " { z } ) 
C_  ( B  X.  B ) )
7569, 74syl5ss 3429 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  ran  ( F  oF  .+  G ) )  ->  ( ( `' 
.+  " { z } )  i^i  ( ran 
F  X.  ran  G
) )  C_  ( B  X.  B ) )
7675sselda 3418 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  ran  ( F  oF  .+  G ) )  /\  p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  p  e.  ( B  X.  B ) )
7751adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  dom  M  e.  U. ran sigAlgebra )
78 sibfof.4 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  Fre )
7978sgsiga 29038 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  (sigaGen `  J )  e.  U. ran sigAlgebra )
8011, 79syl5eqel 2553 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
8180adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  S  e.  U. ran sigAlgebra )
823, 4, 11, 12, 13, 14, 15, 16, 17sibfmbl 29241 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  ( dom 
MMblFnM S ) )
8382adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  F  e.  ( dom  MMblFnM S
) )
844tpstop 20031 . . . . . . . . . . . . . . . . . . . . 21  |-  ( W  e.  TopSp  ->  J  e.  Top )
85 cldssbrsiga 29083 . . . . . . . . . . . . . . . . . . . . 21  |-  ( J  e.  Top  ->  ( Clsd `  J )  C_  (sigaGen `  J ) )
862, 84, 853syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( Clsd `  J
)  C_  (sigaGen `  J
) )
8786adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  ( Clsd `  J )  C_  (sigaGen `  J ) )
8878adantr 472 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  J  e.  Fre )
89 xp1st 6842 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  ( B  X.  B )  ->  ( 1st `  p )  e.  B )
9089adantl 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  ( 1st `  p )  e.  B )
916adantr 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  B  =  U. J )
9290, 91eleqtrd 2551 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  ( 1st `  p )  e. 
U. J )
93 eqid 2471 . . . . . . . . . . . . . . . . . . . . 21  |-  U. J  =  U. J
9493t1sncld 20419 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  Fre  /\  ( 1st `  p )  e.  U. J )  ->  { ( 1st `  p ) }  e.  ( Clsd `  J )
)
9588, 92, 94syl2anc 673 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  { ( 1st `  p ) }  e.  ( Clsd `  J ) )
9687, 95sseldd 3419 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  { ( 1st `  p ) }  e.  (sigaGen `  J
) )
9796, 11syl6eleqr 2560 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  { ( 1st `  p ) }  e.  S )
9877, 81, 83, 97mbfmcnvima 29152 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  ( `' F " { ( 1st `  p ) } )  e.  dom  M )
9968, 76, 98syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  ran  ( F  oF  .+  G ) )  /\  p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( `' F " { ( 1st `  p
) } )  e. 
dom  M )
1003, 4, 11, 12, 13, 14, 15, 16, 19sibfmbl 29241 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  G  e.  ( dom 
MMblFnM S ) )
101100adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  G  e.  ( dom  MMblFnM S
) )
102 xp2nd 6843 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  ( B  X.  B )  ->  ( 2nd `  p )  e.  B )
103102adantl 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  ( 2nd `  p )  e.  B )
104103, 91eleqtrd 2551 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  ( 2nd `  p )  e. 
U. J )
10593t1sncld 20419 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  Fre  /\  ( 2nd `  p )  e.  U. J )  ->  { ( 2nd `  p ) }  e.  ( Clsd `  J )
)
10688, 104, 105syl2anc 673 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  { ( 2nd `  p ) }  e.  ( Clsd `  J ) )
10787, 106sseldd 3419 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  { ( 2nd `  p ) }  e.  (sigaGen `  J
) )
108107, 11syl6eleqr 2560 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  { ( 2nd `  p ) }  e.  S )
10977, 81, 101, 108mbfmcnvima 29152 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  ( B  X.  B
) )  ->  ( `' G " { ( 2nd `  p ) } )  e.  dom  M )
11068, 76, 109syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  ran  ( F  oF  .+  G ) )  /\  p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( `' G " { ( 2nd `  p
) } )  e. 
dom  M )
111 inelsiga 29031 . . . . . . . . . . . . . . 15  |-  ( ( dom  M  e.  U. ran sigAlgebra  /\  ( `' F " { ( 1st `  p
) } )  e. 
dom  M  /\  ( `' G " { ( 2nd `  p ) } )  e.  dom  M )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  e. 
dom  M )
11267, 99, 110, 111syl3anc 1292 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  ran  ( F  oF  .+  G ) )  /\  p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  e. 
dom  M )
113112ralrimiva 2809 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ran  ( F  oF  .+  G ) )  ->  A. p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  e.  dom  M )
1143, 4, 11, 12, 13, 14, 15, 16, 17sibfrn 29243 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ran  F  e.  Fin )
1153, 4, 11, 12, 13, 14, 15, 16, 19sibfrn 29243 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ran  G  e.  Fin )
116 xpfi 7860 . . . . . . . . . . . . . . . . 17  |-  ( ( ran  F  e.  Fin  /\ 
ran  G  e.  Fin )  ->  ( ran  F  X.  ran  G )  e. 
Fin )
117114, 115, 116syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ran  F  X.  ran  G )  e.  Fin )
118 inss2 3644 . . . . . . . . . . . . . . . 16  |-  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G
) )  C_  ( ran  F  X.  ran  G
)
119 ssdomg 7633 . . . . . . . . . . . . . . . 16  |-  ( ( ran  F  X.  ran  G )  e.  Fin  ->  ( ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) 
C_  ( ran  F  X.  ran  G )  -> 
( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) )  ~<_  ( ran  F  X.  ran  G ) ) )
120117, 118, 119mpisyl 21 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) )  ~<_  ( ran  F  X.  ran  G ) )
121 isfinite 8175 . . . . . . . . . . . . . . . . 17  |-  ( ( ran  F  X.  ran  G )  e.  Fin  <->  ( ran  F  X.  ran  G ) 
~<  om )
122121biimpi 199 . . . . . . . . . . . . . . . 16  |-  ( ( ran  F  X.  ran  G )  e.  Fin  ->  ( ran  F  X.  ran  G )  ~<  om )
123 sdomdom 7615 . . . . . . . . . . . . . . . 16  |-  ( ( ran  F  X.  ran  G )  ~<  om  ->  ( ran  F  X.  ran  G )  ~<_  om )
124117, 122, 1233syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ran  F  X.  ran  G )  ~<_  om )
125 domtr 7640 . . . . . . . . . . . . . . 15  |-  ( ( ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) )  ~<_  ( ran  F  X.  ran  G )  /\  ( ran  F  X.  ran  G
)  ~<_  om )  ->  (
( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) )  ~<_  om )
126120, 124, 125syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) )  ~<_  om )
127126adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ran  ( F  oF  .+  G ) )  ->  ( ( `' 
.+  " { z } )  i^i  ( ran 
F  X.  ran  G
) )  ~<_  om )
128 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ p
( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) )
129128sigaclcuni 29014 . . . . . . . . . . . . 13  |-  ( ( dom  M  e.  U. ran sigAlgebra  /\  A. p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  e.  dom  M  /\  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) )  ~<_  om )  ->  U_ p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  e.  dom  M )
13066, 113, 127, 129syl3anc 1292 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ran  ( F  oF  .+  G ) )  ->  U_ p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  e.  dom  M )
13165, 130eqeltrd 2549 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ran  ( F  oF  .+  G ) )  ->  ( `' ( F  oF  .+  G ) " {
z } )  e. 
dom  M )
132131ralrimiva 2809 . . . . . . . . . 10  |-  ( ph  ->  A. z  e.  ran  ( F  oF  .+  G ) ( `' ( F  oF  .+  G ) " { z } )  e.  dom  M )
133 ssralv 3479 . . . . . . . . . 10  |-  ( ( b  i^i  ran  ( F  oF  .+  G
) )  C_  ran  ( F  oF  .+  G )  ->  ( A. z  e.  ran  ( F  oF  .+  G ) ( `' ( F  oF  .+  G ) " { z } )  e.  dom  M  ->  A. z  e.  (
b  i^i  ran  ( F  oF  .+  G
) ) ( `' ( F  oF  .+  G ) " { z } )  e.  dom  M ) )
13457, 132, 133mpsyl 64 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  ( b  i^i  ran  ( F  oF  .+  G
) ) ( `' ( F  oF  .+  G ) " { z } )  e.  dom  M )
135134adantr 472 . . . . . . . 8  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  ->  A. z  e.  (
b  i^i  ran  ( F  oF  .+  G
) ) ( `' ( F  oF  .+  G ) " { z } )  e.  dom  M )
136 ffun 5742 . . . . . . . . . . . . . 14  |-  (  .+  : ( B  X.  B ) --> C  ->  Fun  .+  )
1371, 136syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  .+  )
138 imafi 7885 . . . . . . . . . . . . 13  |-  ( ( Fun  .+  /\  ( ran  F  X.  ran  G
)  e.  Fin )  ->  (  .+  " ( ran  F  X.  ran  G
) )  e.  Fin )
139137, 117, 138syl2anc 673 . . . . . . . . . . . 12  |-  ( ph  ->  (  .+  " ( ran  F  X.  ran  G
) )  e.  Fin )
14018, 20, 9, 23ofrn2 28317 . . . . . . . . . . . 12  |-  ( ph  ->  ran  ( F  oF  .+  G )  C_  (  .+  " ( ran 
F  X.  ran  G
) ) )
141 ssfi 7810 . . . . . . . . . . . 12  |-  ( ( (  .+  " ( ran  F  X.  ran  G
) )  e.  Fin  /\ 
ran  ( F  oF  .+  G )  C_  (  .+  " ( ran 
F  X.  ran  G
) ) )  ->  ran  ( F  oF  .+  G )  e. 
Fin )
142139, 140, 141syl2anc 673 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( F  oF  .+  G )  e. 
Fin )
143 ssdomg 7633 . . . . . . . . . . 11  |-  ( ran  ( F  oF  .+  G )  e. 
Fin  ->  ( ( b  i^i  ran  ( F  oF  .+  G ) )  C_  ran  ( F  oF  .+  G
)  ->  ( b  i^i  ran  ( F  oF  .+  G ) )  ~<_  ran  ( F  oF  .+  G ) ) )
144142, 57, 143mpisyl 21 . . . . . . . . . 10  |-  ( ph  ->  ( b  i^i  ran  ( F  oF  .+  G ) )  ~<_  ran  ( F  oF  .+  G ) )
145 isfinite 8175 . . . . . . . . . . . 12  |-  ( ran  ( F  oF  .+  G )  e. 
Fin 
<->  ran  ( F  oF  .+  G )  ~<  om )
146142, 145sylib 201 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( F  oF  .+  G )  ~<  om )
147 sdomdom 7615 . . . . . . . . . . 11  |-  ( ran  ( F  oF  .+  G )  ~<  om  ->  ran  ( F  oF  .+  G )  ~<_  om )
148146, 147syl 17 . . . . . . . . . 10  |-  ( ph  ->  ran  ( F  oF  .+  G )  ~<_  om )
149 domtr 7640 . . . . . . . . . 10  |-  ( ( ( b  i^i  ran  ( F  oF  .+  G ) )  ~<_  ran  ( F  oF  .+  G )  /\  ran  ( F  oF  .+  G )  ~<_  om )  ->  ( b  i^i  ran  ( F  oF  .+  G ) )  ~<_  om )
150144, 148, 149syl2anc 673 . . . . . . . . 9  |-  ( ph  ->  ( b  i^i  ran  ( F  oF  .+  G ) )  ~<_  om )
151150adantr 472 . . . . . . . 8  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  -> 
( b  i^i  ran  ( F  oF  .+  G ) )  ~<_  om )
152 nfcv 2612 . . . . . . . . 9  |-  F/_ z
( b  i^i  ran  ( F  oF  .+  G ) )
153152sigaclcuni 29014 . . . . . . . 8  |-  ( ( dom  M  e.  U. ran sigAlgebra  /\  A. z  e.  ( b  i^i  ran  ( F  oF  .+  G
) ) ( `' ( F  oF  .+  G ) " { z } )  e.  dom  M  /\  ( b  i^i  ran  ( F  oF  .+  G ) )  ~<_  om )  ->  U_ z  e.  ( b  i^i  ran  ( F  oF  .+  G ) ) ( `' ( F  oF  .+  G ) " { z } )  e.  dom  M )
15452, 135, 151, 153syl3anc 1292 . . . . . . 7  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  ->  U_ z  e.  (
b  i^i  ran  ( F  oF  .+  G
) ) ( `' ( F  oF  .+  G ) " { z } )  e.  dom  M )
15556, 154syl5eqelr 2554 . . . . . 6  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  -> 
( `' ( F  oF  .+  G
) " ( b  i^i  ran  ( F  oF  .+  G ) ) )  e.  dom  M )
156 difpreima 6023 . . . . . . . . . 10  |-  ( Fun  ( F  oF  .+  G )  -> 
( `' ( F  oF  .+  G
) " ( b 
\  ran  ( F  oF  .+  G ) ) )  =  ( ( `' ( F  oF  .+  G
) " b ) 
\  ( `' ( F  oF  .+  G ) " ran  ( F  oF  .+  G ) ) ) )
15725, 45, 1563syl 18 . . . . . . . . 9  |-  ( ph  ->  ( `' ( F  oF  .+  G
) " ( b 
\  ran  ( F  oF  .+  G ) ) )  =  ( ( `' ( F  oF  .+  G
) " b ) 
\  ( `' ( F  oF  .+  G ) " ran  ( F  oF  .+  G ) ) ) )
158 cnvimarndm 5195 . . . . . . . . . . 11  |-  ( `' ( F  oF  .+  G ) " ran  ( F  oF  .+  G ) )  =  dom  ( F  oF  .+  G
)
159158difeq2i 3537 . . . . . . . . . 10  |-  ( ( `' ( F  oF  .+  G ) "
b )  \  ( `' ( F  oF  .+  G ) " ran  ( F  oF  .+  G ) ) )  =  ( ( `' ( F  oF  .+  G ) "
b )  \  dom  ( F  oF  .+  G ) )
160 cnvimass 5194 . . . . . . . . . . 11  |-  ( `' ( F  oF  .+  G ) "
b )  C_  dom  ( F  oF  .+  G )
161 ssdif0 3741 . . . . . . . . . . 11  |-  ( ( `' ( F  oF  .+  G ) "
b )  C_  dom  ( F  oF  .+  G )  <->  ( ( `' ( F  oF  .+  G ) "
b )  \  dom  ( F  oF  .+  G ) )  =  (/) )
162160, 161mpbi 213 . . . . . . . . . 10  |-  ( ( `' ( F  oF  .+  G ) "
b )  \  dom  ( F  oF  .+  G ) )  =  (/)
163159, 162eqtri 2493 . . . . . . . . 9  |-  ( ( `' ( F  oF  .+  G ) "
b )  \  ( `' ( F  oF  .+  G ) " ran  ( F  oF  .+  G ) ) )  =  (/)
164157, 163syl6eq 2521 . . . . . . . 8  |-  ( ph  ->  ( `' ( F  oF  .+  G
) " ( b 
\  ran  ( F  oF  .+  G ) ) )  =  (/) )
165 0elsiga 29010 . . . . . . . . 9  |-  ( dom 
M  e.  U. ran sigAlgebra  ->  (/)  e.  dom  M )
16616, 50, 1653syl 18 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  dom  M )
167164, 166eqeltrd 2549 . . . . . . 7  |-  ( ph  ->  ( `' ( F  oF  .+  G
) " ( b 
\  ran  ( F  oF  .+  G ) ) )  e.  dom  M )
168167adantr 472 . . . . . 6  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  -> 
( `' ( F  oF  .+  G
) " ( b 
\  ran  ( F  oF  .+  G ) ) )  e.  dom  M )
169 unelsiga 29030 . . . . . 6  |-  ( ( dom  M  e.  U. ran sigAlgebra  /\  ( `' ( F  oF  .+  G
) " ( b  i^i  ran  ( F  oF  .+  G ) ) )  e.  dom  M  /\  ( `' ( F  oF  .+  G ) " (
b  \  ran  ( F  oF  .+  G
) ) )  e. 
dom  M )  -> 
( ( `' ( F  oF  .+  G ) " (
b  i^i  ran  ( F  oF  .+  G
) ) )  u.  ( `' ( F  oF  .+  G
) " ( b 
\  ran  ( F  oF  .+  G ) ) ) )  e. 
dom  M )
17052, 155, 168, 169syl3anc 1292 . . . . 5  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  -> 
( ( `' ( F  oF  .+  G ) " (
b  i^i  ran  ( F  oF  .+  G
) ) )  u.  ( `' ( F  oF  .+  G
) " ( b 
\  ran  ( F  oF  .+  G ) ) ) )  e. 
dom  M )
17149, 170eqeltrd 2549 . . . 4  |-  ( (
ph  /\  b  e.  (sigaGen `  ( TopOpen `  K
) ) )  -> 
( `' ( F  oF  .+  G
) " b )  e.  dom  M )
172171ralrimiva 2809 . . 3  |-  ( ph  ->  A. b  e.  (sigaGen `  ( TopOpen `  K )
) ( `' ( F  oF  .+  G ) " b
)  e.  dom  M
)
17351, 38ismbfm 29147 . . 3  |-  ( ph  ->  ( ( F  oF  .+  G )  e.  ( dom  MMblFnM (sigaGen `  ( TopOpen `  K )
) )  <->  ( ( F  oF  .+  G
)  e.  ( U. (sigaGen `  ( TopOpen `  K
) )  ^m  U. dom  M )  /\  A. b  e.  (sigaGen `  ( TopOpen
`  K ) ) ( `' ( F  oF  .+  G
) " b )  e.  dom  M ) ) )
17442, 172, 173mpbir2and 936 . 2  |-  ( ph  ->  ( F  oF  .+  G )  e.  ( dom  MMblFnM (sigaGen `  ( TopOpen `  K )
) ) )
17564adantr 472 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( `' ( F  oF  .+  G ) " {
z } )  = 
U_ p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )
176175fveq2d 5883 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( M `  ( `' ( F  oF  .+  G
) " { z } ) )  =  ( M `  U_ p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) ) )
177 measbasedom 29098 . . . . . . . . 9  |-  ( M  e.  U. ran measures  <->  M  e.  (measures `  dom  M ) )
17816, 177sylib 201 . . . . . . . 8  |-  ( ph  ->  M  e.  (measures `  dom  M ) )
179178adantr 472 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  M  e.  (measures `  dom  M ) )
180 eldifi 3544 . . . . . . . 8  |-  ( z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } )  ->  z  e.  ran  ( F  oF  .+  G ) )
181180, 113sylan2 482 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  A. p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  e.  dom  M )
182126adantr 472 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G
) )  ~<_  om )
183 sneq 3969 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  p
)  ->  { x }  =  { ( 1st `  p ) } )
184183imaeq2d 5174 . . . . . . . . . 10  |-  ( x  =  ( 1st `  p
)  ->  ( `' F " { x }
)  =  ( `' F " { ( 1st `  p ) } ) )
185 sneq 3969 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  p
)  ->  { y }  =  { ( 2nd `  p ) } )
186185imaeq2d 5174 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  p
)  ->  ( `' G " { y } )  =  ( `' G " { ( 2nd `  p ) } ) )
187 ffun 5742 . . . . . . . . . . . 12  |-  ( F : U. dom  M --> U. J  ->  Fun  F
)
18818, 187syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Fun  F )
189 sndisj 4387 . . . . . . . . . . 11  |- Disj  x  e. 
ran  F { x }
190 disjpreima 28271 . . . . . . . . . . 11  |-  ( ( Fun  F  /\ Disj  x  e. 
ran  F { x } )  -> Disj  x  e. 
ran  F ( `' F " { x } ) )
191188, 189, 190sylancl 675 . . . . . . . . . 10  |-  ( ph  -> Disj  x  e.  ran  F ( `' F " { x } ) )
192 ffun 5742 . . . . . . . . . . . 12  |-  ( G : U. dom  M --> U. J  ->  Fun  G
)
19320, 192syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Fun  G )
194 sndisj 4387 . . . . . . . . . . 11  |- Disj  y  e. 
ran  G { y }
195 disjpreima 28271 . . . . . . . . . . 11  |-  ( ( Fun  G  /\ Disj  y  e. 
ran  G { y } )  -> Disj  y  e. 
ran  G ( `' G " { y } ) )
196193, 194, 195sylancl 675 . . . . . . . . . 10  |-  ( ph  -> Disj  y  e.  ran  G ( `' G " { y } ) )
197184, 186, 191, 196disjxpin 28275 . . . . . . . . 9  |-  ( ph  -> Disj  p  e.  ( ran  F  X.  ran  G ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )
198 disjss1 4372 . . . . . . . . 9  |-  ( ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) )  C_  ( ran  F  X.  ran  G )  ->  (Disj  p  e.  ( ran  F  X.  ran  G ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  -> Disj  p  e.  ( ( `' 
.+  " { z } )  i^i  ( ran 
F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
199118, 197, 198mpsyl 64 . . . . . . . 8  |-  ( ph  -> Disj  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
200199adantr 472 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  -> Disj  p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )
201 measvuni 29110 . . . . . . 7  |-  ( ( M  e.  (measures `  dom  M )  /\  A. p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  e.  dom  M  /\  ( ( ( `' 
.+  " { z } )  i^i  ( ran 
F  X.  ran  G
) )  ~<_  om  /\ Disj  p  e.  ( ( `' 
.+  " { z } )  i^i  ( ran 
F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )  ->  ( M `  U_ p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )  = Σ* p  e.  (
( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
202179, 181, 182, 200, 201syl112anc 1296 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( M `  U_ p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )  = Σ* p  e.  (
( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
203 ssfi 7810 . . . . . . . . 9  |-  ( ( ( ran  F  X.  ran  G )  e.  Fin  /\  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) 
C_  ( ran  F  X.  ran  G ) )  ->  ( ( `' 
.+  " { z } )  i^i  ( ran 
F  X.  ran  G
) )  e.  Fin )
204117, 118, 203sylancl 675 . . . . . . . 8  |-  ( ph  ->  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) )  e.  Fin )
205204adantr 472 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G
) )  e.  Fin )
206 simpll 768 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ph )
207 simpr 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )
208118, 207sseldi 3416 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  p  e.  ( ran  F  X.  ran  G ) )
209 xp1st 6842 . . . . . . . . 9  |-  ( p  e.  ( ran  F  X.  ran  G )  -> 
( 1st `  p
)  e.  ran  F
)
210208, 209syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( 1st `  p )  e.  ran  F )
211 xp2nd 6843 . . . . . . . . 9  |-  ( p  e.  ( ran  F  X.  ran  G )  -> 
( 2nd `  p
)  e.  ran  G
)
212208, 211syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( 2nd `  p )  e.  ran  G )
213 oveq12 6317 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  .0.  /\  y  =  .0.  )  ->  ( x  .+  y
)  =  (  .0.  .+  .0.  ) )
214 sibfof.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  (  .0.  .+  .0.  )  =  ( 0g `  K ) )
215213, 214sylan9eqr 2527 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  =  .0.  /\  y  =  .0.  ) )  -> 
( x  .+  y
)  =  ( 0g
`  K ) )
216215ex 441 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  =  .0.  /\  y  =  .0.  )  ->  (
x  .+  y )  =  ( 0g `  K ) ) )
217216necon3ad 2656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  .+  y )  =/=  ( 0g `  K )  ->  -.  ( x  =  .0. 
/\  y  =  .0.  ) ) )
218 neorian 2737 . . . . . . . . . . . . 13  |-  ( ( x  =/=  .0.  \/  y  =/=  .0.  )  <->  -.  (
x  =  .0.  /\  y  =  .0.  )
)
219217, 218syl6ibr 235 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  .+  y )  =/=  ( 0g `  K )  -> 
( x  =/=  .0.  \/  y  =/=  .0.  ) ) )
220219adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x  .+  y )  =/=  ( 0g `  K )  -> 
( x  =/=  .0.  \/  y  =/=  .0.  ) ) )
221220ralrimivva 2814 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  =/=  ( 0g `  K )  -> 
( x  =/=  .0.  \/  y  =/=  .0.  ) ) )
222206, 221syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  =/=  ( 0g `  K
)  ->  ( x  =/=  .0.  \/  y  =/= 
.0.  ) ) )
22369a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G
) )  C_  ( `'  .+  " { z } ) )
224223sselda 3418 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  p  e.  ( `'  .+  " {
z } ) )
225 fniniseg 6018 . . . . . . . . . . . . 13  |-  (  .+  Fn  ( B  X.  B
)  ->  ( p  e.  ( `'  .+  " {
z } )  <->  ( p  e.  ( B  X.  B
)  /\  (  .+  `  p )  =  z ) ) )
226206, 63, 2253syl 18 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( p  e.  ( `'  .+  " {
z } )  <->  ( p  e.  ( B  X.  B
)  /\  (  .+  `  p )  =  z ) ) )
227224, 226mpbid 215 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( p  e.  ( B  X.  B
)  /\  (  .+  `  p )  =  z ) )
228 simpr 468 . . . . . . . . . . . 12  |-  ( ( p  e.  ( B  X.  B )  /\  (  .+  `  p )  =  z )  -> 
(  .+  `  p )  =  z )
229 1st2nd2 6849 . . . . . . . . . . . . . . 15  |-  ( p  e.  ( B  X.  B )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
230229fveq2d 5883 . . . . . . . . . . . . . 14  |-  ( p  e.  ( B  X.  B )  ->  (  .+  `  p )  =  (  .+  `  <. ( 1st `  p ) ,  ( 2nd `  p
) >. ) )
231 df-ov 6311 . . . . . . . . . . . . . 14  |-  ( ( 1st `  p ) 
.+  ( 2nd `  p
) )  =  ( 
.+  `  <. ( 1st `  p ) ,  ( 2nd `  p )
>. )
232230, 231syl6eqr 2523 . . . . . . . . . . . . 13  |-  ( p  e.  ( B  X.  B )  ->  (  .+  `  p )  =  ( ( 1st `  p
)  .+  ( 2nd `  p ) ) )
233232adantr 472 . . . . . . . . . . . 12  |-  ( ( p  e.  ( B  X.  B )  /\  (  .+  `  p )  =  z )  -> 
(  .+  `  p )  =  ( ( 1st `  p )  .+  ( 2nd `  p ) ) )
234228, 233eqtr3d 2507 . . . . . . . . . . 11  |-  ( ( p  e.  ( B  X.  B )  /\  (  .+  `  p )  =  z )  -> 
z  =  ( ( 1st `  p ) 
.+  ( 2nd `  p
) ) )
235227, 234syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  z  =  ( ( 1st `  p
)  .+  ( 2nd `  p ) ) )
236 simplr 770 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )
237236eldifbd 3403 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  -.  z  e.  { ( 0g `  K ) } )
238 elsn 3973 . . . . . . . . . . . 12  |-  ( z  e.  { ( 0g
`  K ) }  <-> 
z  =  ( 0g
`  K ) )
239238necon3bbii 2690 . . . . . . . . . . 11  |-  ( -.  z  e.  { ( 0g `  K ) }  <->  z  =/=  ( 0g `  K ) )
240237, 239sylib 201 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  z  =/=  ( 0g `  K ) )
241235, 240eqnetrrd 2711 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( ( 1st `  p )  .+  ( 2nd `  p ) )  =/=  ( 0g
`  K ) )
242180, 76sylanl2 663 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  p  e.  ( B  X.  B
) )
243242, 89syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( 1st `  p )  e.  B
)
244242, 102syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( 2nd `  p )  e.  B
)
245 oveq1 6315 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  p
)  ->  ( x  .+  y )  =  ( ( 1st `  p
)  .+  y )
)
246245neeq1d 2702 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  p
)  ->  ( (
x  .+  y )  =/=  ( 0g `  K
)  <->  ( ( 1st `  p )  .+  y
)  =/=  ( 0g
`  K ) ) )
247 neeq1 2705 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  p
)  ->  ( x  =/=  .0.  <->  ( 1st `  p
)  =/=  .0.  )
)
248247orbi1d 717 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  p
)  ->  ( (
x  =/=  .0.  \/  y  =/=  .0.  )  <->  ( ( 1st `  p )  =/= 
.0.  \/  y  =/=  .0.  ) ) )
249246, 248imbi12d 327 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  p
)  ->  ( (
( x  .+  y
)  =/=  ( 0g
`  K )  -> 
( x  =/=  .0.  \/  y  =/=  .0.  ) )  <->  ( (
( 1st `  p
)  .+  y )  =/=  ( 0g `  K
)  ->  ( ( 1st `  p )  =/= 
.0.  \/  y  =/=  .0.  ) ) ) )
250 oveq2 6316 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  p
)  ->  ( ( 1st `  p )  .+  y )  =  ( ( 1st `  p
)  .+  ( 2nd `  p ) ) )
251250neeq1d 2702 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  p
)  ->  ( (
( 1st `  p
)  .+  y )  =/=  ( 0g `  K
)  <->  ( ( 1st `  p )  .+  ( 2nd `  p ) )  =/=  ( 0g `  K ) ) )
252 neeq1 2705 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  p
)  ->  ( y  =/=  .0.  <->  ( 2nd `  p
)  =/=  .0.  )
)
253252orbi2d 716 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  p
)  ->  ( (
( 1st `  p
)  =/=  .0.  \/  y  =/=  .0.  )  <->  ( ( 1st `  p )  =/= 
.0.  \/  ( 2nd `  p )  =/=  .0.  ) ) )
254251, 253imbi12d 327 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  p
)  ->  ( (
( ( 1st `  p
)  .+  y )  =/=  ( 0g `  K
)  ->  ( ( 1st `  p )  =/= 
.0.  \/  y  =/=  .0.  ) )  <->  ( (
( 1st `  p
)  .+  ( 2nd `  p ) )  =/=  ( 0g `  K
)  ->  ( ( 1st `  p )  =/= 
.0.  \/  ( 2nd `  p )  =/=  .0.  ) ) ) )
255249, 254rspc2v 3147 . . . . . . . . . 10  |-  ( ( ( 1st `  p
)  e.  B  /\  ( 2nd `  p )  e.  B )  -> 
( A. x  e.  B  A. y  e.  B  ( ( x 
.+  y )  =/=  ( 0g `  K
)  ->  ( x  =/=  .0.  \/  y  =/= 
.0.  ) )  -> 
( ( ( 1st `  p )  .+  ( 2nd `  p ) )  =/=  ( 0g `  K )  ->  (
( 1st `  p
)  =/=  .0.  \/  ( 2nd `  p )  =/=  .0.  ) ) ) )
256243, 244, 255syl2anc 673 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  =/=  ( 0g
`  K )  -> 
( x  =/=  .0.  \/  y  =/=  .0.  ) )  ->  (
( ( 1st `  p
)  .+  ( 2nd `  p ) )  =/=  ( 0g `  K
)  ->  ( ( 1st `  p )  =/= 
.0.  \/  ( 2nd `  p )  =/=  .0.  ) ) ) )
257222, 241, 256mp2d 45 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( ( 1st `  p )  =/= 
.0.  \/  ( 2nd `  p )  =/=  .0.  ) )
2583, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 78sibfinima 29245 . . . . . . . 8  |-  ( ( ( ph  /\  ( 1st `  p )  e. 
ran  F  /\  ( 2nd `  p )  e. 
ran  G )  /\  ( ( 1st `  p
)  =/=  .0.  \/  ( 2nd `  p )  =/=  .0.  ) )  ->  ( M `  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )  e.  ( 0 [,) +oo ) )
259206, 210, 212, 257, 258syl31anc 1295 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( M `  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )  e.  ( 0 [,) +oo ) )
260205, 259esumpfinval 28970 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  -> Σ* p  e.  (
( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )  =  sum_ p  e.  ( ( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
261176, 202, 2603eqtrd 2509 . . . . 5  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( M `  ( `' ( F  oF  .+  G
) " { z } ) )  = 
sum_ p  e.  (
( `'  .+  " {
z } )  i^i  ( ran  F  X.  ran  G ) ) ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
262 rge0ssre 11766 . . . . . . 7  |-  ( 0 [,) +oo )  C_  RR
263262, 259sseldi 3416 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( M `  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )  e.  RR )
264205, 263fsumrecl 13877 . . . . 5  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  sum_ p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) ( M `  (
( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )  e.  RR )
265261, 264eqeltrd 2549 . . . 4  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( M `  ( `' ( F  oF  .+  G
) " { z } ) )  e.  RR )
266179adantr 472 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  M  e.  (measures `  dom  M ) )
267180, 112sylanl2 663 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  e. 
dom  M )
268 measge0 29103 . . . . . . 7  |-  ( ( M  e.  (measures `  dom  M )  /\  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  e. 
dom  M )  -> 
0  <_  ( M `  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) ) )
269266, 267, 268syl2anc 673 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) )  /\  p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G ) ) )  ->  0  <_  ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
270205, 263, 269fsumge0 13932 . . . . 5  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  0  <_  sum_
p  e.  ( ( `'  .+  " { z } )  i^i  ( ran  F  X.  ran  G
) ) ( M `
 ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
271270, 261breqtrrd 4422 . . . 4  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  0  <_  ( M `  ( `' ( F  oF  .+  G ) " { z } ) ) )
272 elrege0 11764 . . . 4  |-  ( ( M `  ( `' ( F  oF  .+  G ) " { z } ) )  e.  ( 0 [,) +oo )  <->  ( ( M `  ( `' ( F  oF  .+  G ) " {
z } ) )  e.  RR  /\  0  <_  ( M `  ( `' ( F  oF  .+  G ) " { z } ) ) ) )
273265, 271, 272sylanbrc 677 . . 3  |-  ( (
ph  /\  z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) )  ->  ( M `  ( `' ( F  oF  .+  G
) " { z } ) )  e.  ( 0 [,) +oo ) )
274273ralrimiva 2809 . 2  |-  ( ph  ->  A. z  e.  ( ran  ( F  oF  .+  G )  \  { ( 0g `  K ) } ) ( M `  ( `' ( F  oF  .+  G ) " { z } ) )  e.  ( 0 [,) +oo ) )
275 eqid 2471 . . 3  |-  (sigaGen `  ( TopOpen
`  K ) )  =  (sigaGen `  ( TopOpen
`  K ) )
276 eqid 2471 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
277 eqid 2471 . . 3  |-  ( .s
`  K )  =  ( .s `  K
)
278 eqid 2471 . . 3  |-  (RRHom `  (Scalar `  K ) )  =  (RRHom `  (Scalar `  K ) )
27927, 28, 275, 276, 277, 278, 26, 16issibf 29239 . 2  |-  ( ph  ->  ( ( F  oF  .+  G )  e. 
dom  ( Ksitg M
)  <->  ( ( F  oF  .+  G
)  e.  ( dom 
MMblFnM (sigaGen `  ( TopOpen `  K
) ) )  /\  ran  ( F  oF  .+  G )  e. 
Fin  /\  A. z  e.  ( ran  ( F  oF  .+  G
)  \  { ( 0g `  K ) } ) ( M `  ( `' ( F  oF  .+  G ) " { z } ) )  e.  ( 0 [,) +oo ) ) ) )
280174, 142, 274, 279mpbir3and 1213 1  |-  ( ph  ->  ( F  oF  .+  G )  e. 
dom  ( Ksitg M
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   {csn 3959   <.cop 3965   U.cuni 4190   U_ciun 4269  Disj wdisj 4366   class class class wbr 4395    X. cxp 4837   `'ccnv 4838   dom cdm 4839   ran crn 4840   "cima 4842   Fun wfun 5583    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    oFcof 6548   omcom 6711   1stc1st 6810   2ndc2nd 6811    ^m cmap 7490    ~<_ cdom 7585    ~< csdm 7586   Fincfn 7587   RRcr 9556   0cc0 9557   +oocpnf 9690    <_ cle 9694   [,)cico 11662   sum_csu 13829   Basecbs 15199  Scalarcsca 15271   .scvsca 15272   TopOpenctopn 15398   0gc0g 15416   Topctop 19994   TopSpctps 19996   Clsdccld 20108   Frect1 20400  RRHomcrrh 28871  Σ*cesum 28922  sigAlgebracsiga 29003  sigaGencsigagen 29034  measurescmeas 29091  MblFnMcmbfm 29145  sitgcsitg 29235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-ac2 8911  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-ac 8565  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-ordt 15477  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-ps 16524  df-tsr 16525  df-plusf 16565  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-submnd 16661  df-grp 16751  df-minusg 16752  df-sbg 16753  df-mulg 16754  df-subg 16892  df-cntz 17049  df-cmn 17510  df-abl 17511  df-mgp 17802  df-ur 17814  df-ring 17860  df-cring 17861  df-subrg 18084  df-abv 18123  df-lmod 18171  df-scaf 18172  df-sra 18473  df-rgmod 18474  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-t1 20407  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-tmd 21165  df-tgp 21166  df-tsms 21219  df-trg 21252  df-xms 21413  df-ms 21414  df-tms 21415  df-nm 21675  df-ngp 21676  df-nrg 21678  df-nlm 21679  df-ii 21987  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-esum 28923  df-siga 29004  df-sigagen 29035  df-meas 29092  df-mbfm 29146  df-sitg 29236
This theorem is referenced by:  sitmcl  29257
  Copyright terms: Public domain W3C validator