HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsval Unicode version

Theorem shsval 22767
Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
shsval  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  (  +h  " ( A  X.  B ) ) )

Proof of Theorem shsval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq12 4856 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  X.  y
)  =  ( A  X.  B ) )
21imaeq2d 5162 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  (  +h  " (
x  X.  y ) )  =  (  +h  " ( A  X.  B ) ) )
3 df-shs 22763 . 2  |-  +H  =  ( x  e.  SH ,  y  e.  SH  |->  (  +h  " ( x  X.  y ) ) )
4 hilablo 22615 . . 3  |-  +h  e.  AbelOp
5 imaexg 5176 . . 3  |-  (  +h  e.  AbelOp  ->  (  +h  " ( A  X.  B ) )  e.  _V )
64, 5ax-mp 8 . 2  |-  (  +h  " ( A  X.  B ) )  e. 
_V
72, 3, 6ovmpt2a 6163 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  (  +h  " ( A  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    X. cxp 4835   "cima 4840  (class class class)co 6040   AbelOpcablo 21822    +h cva 22376   SHcsh 22384    +H cph 22387
This theorem is referenced by:  shsss  22768  shsel  22769
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-hilex 22455  ax-hfvadd 22456  ax-hvcom 22457  ax-hvass 22458  ax-hv0cl 22459  ax-hvaddid 22460  ax-hfvmul 22461  ax-hvmulid 22462  ax-hvdistr2 22465  ax-hvmul0 22466
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081  df-sub 9249  df-neg 9250  df-grpo 21732  df-ablo 21823  df-hvsub 22427  df-shs 22763
  Copyright terms: Public domain W3C validator