HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsval Structured version   Unicode version

Theorem shsval 26431
Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
shsval  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  (  +h  " ( A  X.  B ) ) )

Proof of Theorem shsval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq12 5007 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  X.  y
)  =  ( A  X.  B ) )
21imaeq2d 5325 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  (  +h  " (
x  X.  y ) )  =  (  +h  " ( A  X.  B ) ) )
3 df-shs 26427 . 2  |-  +H  =  ( x  e.  SH ,  y  e.  SH  |->  (  +h  " ( x  X.  y ) ) )
4 hilablo 26278 . . 3  |-  +h  e.  AbelOp
5 imaexg 6710 . . 3  |-  (  +h  e.  AbelOp  ->  (  +h  " ( A  X.  B ) )  e.  _V )
64, 5ax-mp 5 . 2  |-  (  +h  " ( A  X.  B ) )  e. 
_V
72, 3, 6ovmpt2a 6406 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  (  +h  " ( A  X.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106    X. cxp 4986   "cima 4991  (class class class)co 6270   AbelOpcablo 25484    +h cva 26038   SHcsh 26046    +H cph 26049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-hilex 26117  ax-hfvadd 26118  ax-hvcom 26119  ax-hvass 26120  ax-hv0cl 26121  ax-hvaddid 26122  ax-hfvmul 26123  ax-hvmulid 26124  ax-hvdistr2 26127  ax-hvmul0 26128
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-ltxr 9622  df-sub 9798  df-neg 9799  df-grpo 25394  df-ablo 25485  df-hvsub 26089  df-shs 26427
This theorem is referenced by:  shsss  26432  shsel  26433
  Copyright terms: Public domain W3C validator