HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel3 Structured version   Unicode version

Theorem shsel3 26803
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Assertion
Ref Expression
shsel3  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem shsel3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 shsel 26802 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. z  e.  B  C  =  ( x  +h  z ) ) )
2 id 23 . . . . . . . 8  |-  ( C  =  ( x  +h  z )  ->  C  =  ( x  +h  z ) )
3 shel 26699 . . . . . . . . . . 11  |-  ( ( A  e.  SH  /\  x  e.  A )  ->  x  e.  ~H )
4 shel 26699 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  z  e.  B )  ->  z  e.  ~H )
5 hvaddsubval 26521 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
63, 4, 5syl2an 479 . . . . . . . . . 10  |-  ( ( ( A  e.  SH  /\  x  e.  A )  /\  ( B  e.  SH  /\  z  e.  B ) )  -> 
( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
76an4s 833 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  ( x  e.  A  /\  z  e.  B ) )  -> 
( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
87anassrs 652 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  (
x  +h  z )  =  ( x  -h  ( -u 1  .h  z
) ) )
92, 8sylan9eqr 2492 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  +h  z ) )  ->  C  =  ( x  -h  ( -u 1  .h  z ) ) )
10 neg1cn 10713 . . . . . . . . . . 11  |-  -u 1  e.  CC
11 shmulcl 26706 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
1210, 11mp3an2 1348 . . . . . . . . . 10  |-  ( ( B  e.  SH  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
1312adantll 718 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  z  e.  B
)  ->  ( -u 1  .h  z )  e.  B
)
1413adantlr 719 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B )
15 oveq2 6313 . . . . . . . . . 10  |-  ( y  =  ( -u 1  .h  z )  ->  (
x  -h  y )  =  ( x  -h  ( -u 1  .h  z
) ) )
1615eqeq2d 2443 . . . . . . . . 9  |-  ( y  =  ( -u 1  .h  z )  ->  ( C  =  ( x  -h  y )  <->  C  =  ( x  -h  ( -u 1  .h  z ) ) ) )
1716rspcev 3188 . . . . . . . 8  |-  ( ( ( -u 1  .h  z )  e.  B  /\  C  =  (
x  -h  ( -u
1  .h  z ) ) )  ->  E. y  e.  B  C  =  ( x  -h  y
) )
1814, 17sylan 473 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  -h  ( -u 1  .h  z
) ) )  ->  E. y  e.  B  C  =  ( x  -h  y ) )
199, 18syldan 472 . . . . . 6  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  +h  z ) )  ->  E. y  e.  B  C  =  ( x  -h  y ) )
2019ex 435 . . . . 5  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  ( C  =  ( x  +h  z )  ->  E. y  e.  B  C  =  ( x  -h  y
) ) )
2120rexlimdva 2924 . . . 4  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. z  e.  B  C  =  ( x  +h  z )  ->  E. y  e.  B  C  =  ( x  -h  y
) ) )
22 id 23 . . . . . . . 8  |-  ( C  =  ( x  -h  y )  ->  C  =  ( x  -h  y ) )
23 shel 26699 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  y  e.  B )  ->  y  e.  ~H )
24 hvsubval 26504 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
253, 23, 24syl2an 479 . . . . . . . . . 10  |-  ( ( ( A  e.  SH  /\  x  e.  A )  /\  ( B  e.  SH  /\  y  e.  B ) )  -> 
( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
2625an4s 833 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
2726anassrs 652 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  (
x  -h  y )  =  ( x  +h  ( -u 1  .h  y
) ) )
2822, 27sylan9eqr 2492 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  -h  y ) )  ->  C  =  ( x  +h  ( -u 1  .h  y ) ) )
29 shmulcl 26706 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B
)
3010, 29mp3an2 1348 . . . . . . . . . 10  |-  ( ( B  e.  SH  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B
)
3130adantll 718 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  y  e.  B
)  ->  ( -u 1  .h  y )  e.  B
)
3231adantlr 719 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B )
33 oveq2 6313 . . . . . . . . . 10  |-  ( z  =  ( -u 1  .h  y )  ->  (
x  +h  z )  =  ( x  +h  ( -u 1  .h  y
) ) )
3433eqeq2d 2443 . . . . . . . . 9  |-  ( z  =  ( -u 1  .h  y )  ->  ( C  =  ( x  +h  z )  <->  C  =  ( x  +h  ( -u 1  .h  y ) ) ) )
3534rspcev 3188 . . . . . . . 8  |-  ( ( ( -u 1  .h  y )  e.  B  /\  C  =  (
x  +h  ( -u
1  .h  y ) ) )  ->  E. z  e.  B  C  =  ( x  +h  z
) )
3632, 35sylan 473 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  +h  ( -u 1  .h  y
) ) )  ->  E. z  e.  B  C  =  ( x  +h  z ) )
3728, 36syldan 472 . . . . . 6  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  -h  y ) )  ->  E. z  e.  B  C  =  ( x  +h  z ) )
3837ex 435 . . . . 5  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  ( C  =  ( x  -h  y )  ->  E. z  e.  B  C  =  ( x  +h  z
) ) )
3938rexlimdva 2924 . . . 4  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. y  e.  B  C  =  ( x  -h  y )  ->  E. z  e.  B  C  =  ( x  +h  z
) ) )
4021, 39impbid 193 . . 3  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. z  e.  B  C  =  ( x  +h  z )  <->  E. y  e.  B  C  =  ( x  -h  y
) ) )
4140rexbidva 2943 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( E. x  e.  A  E. z  e.  B  C  =  ( x  +h  z )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
421, 41bitrd 256 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   E.wrex 2783  (class class class)co 6305   CCcc 9536   1c1 9539   -ucneg 9860   ~Hchil 26407    +h cva 26408    .h csm 26409    -h cmv 26413   SHcsh 26416    +H cph 26419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-hilex 26487  ax-hfvadd 26488  ax-hvcom 26489  ax-hvass 26490  ax-hv0cl 26491  ax-hvaddid 26492  ax-hfvmul 26493  ax-hvmulid 26494  ax-hvmulass 26495  ax-hvdistr2 26497  ax-hvmul0 26498
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-ltxr 9679  df-sub 9861  df-neg 9862  df-grpo 25764  df-ablo 25855  df-hvsub 26459  df-sh 26695  df-shs 26796
This theorem is referenced by:  pjimai  27664
  Copyright terms: Public domain W3C validator