HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscli Structured version   Unicode version

Theorem shscli 26953
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1  |-  A  e.  SH
shscl.2  |-  B  e.  SH
Assertion
Ref Expression
shscli  |-  ( A  +H  B )  e.  SH

Proof of Theorem shscli
Dummy variables  x  f  y  z  w  g  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shscl.1 . . . 4  |-  A  e.  SH
2 shscl.2 . . . 4  |-  B  e.  SH
3 shsss 26949 . . . 4  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  C_  ~H )
41, 2, 3mp2an 676 . . 3  |-  ( A  +H  B )  C_  ~H
5 sh0 26852 . . . . . 6  |-  ( A  e.  SH  ->  0h  e.  A )
61, 5ax-mp 5 . . . . 5  |-  0h  e.  A
7 sh0 26852 . . . . . 6  |-  ( B  e.  SH  ->  0h  e.  B )
82, 7ax-mp 5 . . . . 5  |-  0h  e.  B
9 ax-hv0cl 26639 . . . . . . 7  |-  0h  e.  ~H
109hvaddid2i 26665 . . . . . 6  |-  ( 0h 
+h  0h )  =  0h
1110eqcomi 2435 . . . . 5  |-  0h  =  ( 0h  +h  0h )
12 rspceov 6340 . . . . 5  |-  ( ( 0h  e.  A  /\  0h  e.  B  /\  0h  =  ( 0h  +h  0h ) )  ->  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
) )
136, 8, 11, 12mp3an 1360 . . . 4  |-  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
)
141, 2shseli 26952 . . . 4  |-  ( 0h  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
) )
1513, 14mpbir 212 . . 3  |-  0h  e.  ( A  +H  B
)
164, 15pm3.2i 456 . 2  |-  ( ( A  +H  B ) 
C_  ~H  /\  0h  e.  ( A  +H  B
) )
171, 2shseli 26952 . . . . . 6  |-  ( x  e.  ( A  +H  B )  <->  E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w
) )
181, 2shseli 26952 . . . . . 6  |-  ( y  e.  ( A  +H  B )  <->  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u
) )
19 shaddcl 26853 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  SH  /\  z  e.  A  /\  v  e.  A )  ->  ( z  +h  v
)  e.  A )
201, 19mp3an1 1347 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  v  e.  A )  ->  ( z  +h  v
)  e.  A )
2120ad2ant2r 751 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( z  +h  v
)  e.  A )
2221ad2ant2r 751 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( z  +h  v )  e.  A
)
23 shaddcl 26853 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  SH  /\  w  e.  B  /\  u  e.  B )  ->  ( w  +h  u
)  e.  B )
242, 23mp3an1 1347 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  B  /\  u  e.  B )  ->  ( w  +h  u
)  e.  B )
2524ad2ant2l 750 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( w  +h  u
)  e.  B )
2625ad2ant2r 751 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( w  +h  u )  e.  B
)
27 oveq12 6310 . . . . . . . . . . . . . . 15  |-  ( ( x  =  ( z  +h  w )  /\  y  =  ( v  +h  u ) )  -> 
( x  +h  y
)  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
2827ad2ant2l 750 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( x  +h  y )  =  ( ( z  +h  w
)  +h  ( v  +h  u ) ) )
291sheli 26850 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  A  ->  z  e.  ~H )
301sheli 26850 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  A  ->  v  e.  ~H )
3129, 30anim12i 568 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  A  /\  v  e.  A )  ->  ( z  e.  ~H  /\  v  e.  ~H )
)
322sheli 26850 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  B  ->  w  e.  ~H )
332sheli 26850 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  B  ->  u  e.  ~H )
3432, 33anim12i 568 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  B  /\  u  e.  B )  ->  ( w  e.  ~H  /\  u  e.  ~H )
)
35 hvadd4 26672 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  ~H  /\  v  e.  ~H )  /\  ( w  e.  ~H  /\  u  e.  ~H )
)  ->  ( (
z  +h  v )  +h  ( w  +h  u ) )  =  ( ( z  +h  w )  +h  (
v  +h  u ) ) )
3631, 34, 35syl2an 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  A  /\  v  e.  A
)  /\  ( w  e.  B  /\  u  e.  B ) )  -> 
( ( z  +h  v )  +h  (
w  +h  u ) )  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
3736an4s 833 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( ( z  +h  v )  +h  (
w  +h  u ) )  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
3837ad2ant2r 751 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( ( z  +h  v )  +h  ( w  +h  u
) )  =  ( ( z  +h  w
)  +h  ( v  +h  u ) ) )
3928, 38eqtr4d 2466 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( x  +h  y )  =  ( ( z  +h  v
)  +h  ( w  +h  u ) ) )
40 rspceov 6340 . . . . . . . . . . . . 13  |-  ( ( ( z  +h  v
)  e.  A  /\  ( w  +h  u
)  e.  B  /\  ( x  +h  y
)  =  ( ( z  +h  v )  +h  ( w  +h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4122, 26, 39, 40syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4241ancoms 454 . . . . . . . . . . 11  |-  ( ( ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) )  /\  ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4342exp43 615 . . . . . . . . . 10  |-  ( ( v  e.  A  /\  u  e.  B )  ->  ( y  =  ( v  +h  u )  ->  ( ( z  e.  A  /\  w  e.  B )  ->  (
x  =  ( z  +h  w )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) ) ) ) )
4443rexlimivv 2922 . . . . . . . . 9  |-  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  (
( z  e.  A  /\  w  e.  B
)  ->  ( x  =  ( z  +h  w )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) ) )
4544com3l 84 . . . . . . . 8  |-  ( ( z  e.  A  /\  w  e.  B )  ->  ( x  =  ( z  +h  w )  ->  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u
)  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) ) )
4645rexlimivv 2922 . . . . . . 7  |-  ( E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w )  ->  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) )
4746imp 430 . . . . . 6  |-  ( ( E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w )  /\  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4817, 18, 47syl2anb 481 . . . . 5  |-  ( ( x  e.  ( A  +H  B )  /\  y  e.  ( A  +H  B ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
491, 2shseli 26952 . . . . 5  |-  ( ( x  +h  y )  e.  ( A  +H  B )  <->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) )
5048, 49sylibr 215 . . . 4  |-  ( ( x  e.  ( A  +H  B )  /\  y  e.  ( A  +H  B ) )  -> 
( x  +h  y
)  e.  ( A  +H  B ) )
5150rgen2a 2852 . . 3  |-  A. x  e.  ( A  +H  B
) A. y  e.  ( A  +H  B
) ( x  +h  y )  e.  ( A  +H  B )
52 shmulcl 26854 . . . . . . . . . . . . . 14  |-  ( ( A  e.  SH  /\  x  e.  CC  /\  v  e.  A )  ->  (
x  .h  v )  e.  A )
531, 52mp3an1 1347 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  v  e.  A )  ->  ( x  .h  v
)  e.  A )
5453adantrr 721 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  v
)  e.  A )
55 shmulcl 26854 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  SH  /\  x  e.  CC  /\  u  e.  B )  ->  (
x  .h  u )  e.  B )
562, 55mp3an1 1347 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  u  e.  B )  ->  ( x  .h  u
)  e.  B )
5756adantrr 721 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) )  ->  (
x  .h  u )  e.  B )
5857adantrl 720 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  u
)  e.  B )
59 oveq2 6309 . . . . . . . . . . . . . . 15  |-  ( y  =  ( v  +h  u )  ->  (
x  .h  y )  =  ( x  .h  ( v  +h  u
) ) )
6059adantl 467 . . . . . . . . . . . . . 14  |-  ( ( u  e.  B  /\  y  =  ( v  +h  u ) )  -> 
( x  .h  y
)  =  ( x  .h  ( v  +h  u ) ) )
6160ad2antll 733 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  y
)  =  ( x  .h  ( v  +h  u ) ) )
62 id 23 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  x  e.  CC )
63 ax-hvdistr1 26644 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
x  .h  ( v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u
) ) )
6462, 30, 33, 63syl3an 1306 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  v  e.  A  /\  u  e.  B )  ->  ( x  .h  (
v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
65643expb 1206 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  u  e.  B
) )  ->  (
x  .h  ( v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u
) ) )
6665adantrrr 729 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  (
v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
6761, 66eqtrd 2463 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  y
)  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
68 rspceov 6340 . . . . . . . . . . . 12  |-  ( ( ( x  .h  v
)  e.  A  /\  ( x  .h  u
)  e.  B  /\  ( x  .h  y
)  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
6954, 58, 67, 68syl3anc 1264 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
7069ancoms 454 . . . . . . . . . 10  |-  ( ( ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) )  /\  x  e.  CC )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) )
7170exp42 614 . . . . . . . . 9  |-  ( v  e.  A  ->  (
u  e.  B  -> 
( y  =  ( v  +h  u )  ->  ( x  e.  CC  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) ) ) ) )
7271imp 430 . . . . . . . 8  |-  ( ( v  e.  A  /\  u  e.  B )  ->  ( y  =  ( v  +h  u )  ->  ( x  e.  CC  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) ) ) )
7372rexlimivv 2922 . . . . . . 7  |-  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  (
x  e.  CC  ->  E. f  e.  A  E. g  e.  B  (
x  .h  y )  =  ( f  +h  g ) ) )
7473impcom 431 . . . . . 6  |-  ( ( x  e.  CC  /\  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
7518, 74sylan2b 477 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  ( A  +H  B ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
761, 2shseli 26952 . . . . 5  |-  ( ( x  .h  y )  e.  ( A  +H  B )  <->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) )
7775, 76sylibr 215 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  ( A  +H  B ) )  -> 
( x  .h  y
)  e.  ( A  +H  B ) )
7877rgen2 2850 . . 3  |-  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B )
7951, 78pm3.2i 456 . 2  |-  ( A. x  e.  ( A  +H  B ) A. y  e.  ( A  +H  B
) ( x  +h  y )  e.  ( A  +H  B )  /\  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B ) )
80 issh2 26845 . 2  |-  ( ( A  +H  B )  e.  SH  <->  ( (
( A  +H  B
)  C_  ~H  /\  0h  e.  ( A  +H  B
) )  /\  ( A. x  e.  ( A  +H  B ) A. y  e.  ( A  +H  B ) ( x  +h  y )  e.  ( A  +H  B
)  /\  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B ) ) ) )
8116, 79, 80mpbir2an 928 1  |-  ( A  +H  B )  e.  SH
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776    C_ wss 3436  (class class class)co 6301   CCcc 9537   ~Hchil 26555    +h cva 26556    .h csm 26557   0hc0v 26560   SHcsh 26564    +H cph 26567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-hilex 26635  ax-hfvadd 26636  ax-hvcom 26637  ax-hvass 26638  ax-hv0cl 26639  ax-hvaddid 26640  ax-hfvmul 26641  ax-hvmulid 26642  ax-hvdistr1 26644  ax-hvdistr2 26645  ax-hvmul0 26646
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-po 4770  df-so 4771  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-er 7367  df-en 7574  df-dom 7575  df-sdom 7576  df-pnf 9677  df-mnf 9678  df-ltxr 9680  df-sub 9862  df-neg 9863  df-grpo 25902  df-ablo 25993  df-hvsub 26607  df-sh 26843  df-shs 26944
This theorem is referenced by:  shscl  26954  shsval2i  27023  shjshsi  27128  spanuni  27180  5oalem1  27290  5oalem3  27292  5oalem5  27294  5oalem6  27295  5oai  27297  3oalem2  27299  3oalem6  27303  mayete3i  27364  sumdmdlem  28054
  Copyright terms: Public domain W3C validator