HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscli Structured version   Unicode version

Theorem shscli 24719
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1  |-  A  e.  SH
shscl.2  |-  B  e.  SH
Assertion
Ref Expression
shscli  |-  ( A  +H  B )  e.  SH

Proof of Theorem shscli
Dummy variables  x  f  y  z  w  g  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shscl.1 . . . 4  |-  A  e.  SH
2 shscl.2 . . . 4  |-  B  e.  SH
3 shsss 24715 . . . 4  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  C_  ~H )
41, 2, 3mp2an 672 . . 3  |-  ( A  +H  B )  C_  ~H
5 sh0 24617 . . . . . 6  |-  ( A  e.  SH  ->  0h  e.  A )
61, 5ax-mp 5 . . . . 5  |-  0h  e.  A
7 sh0 24617 . . . . . 6  |-  ( B  e.  SH  ->  0h  e.  B )
82, 7ax-mp 5 . . . . 5  |-  0h  e.  B
9 ax-hv0cl 24404 . . . . . . 7  |-  0h  e.  ~H
109hvaddid2i 24430 . . . . . 6  |-  ( 0h 
+h  0h )  =  0h
1110eqcomi 2446 . . . . 5  |-  0h  =  ( 0h  +h  0h )
12 rspceov 6127 . . . . 5  |-  ( ( 0h  e.  A  /\  0h  e.  B  /\  0h  =  ( 0h  +h  0h ) )  ->  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
) )
136, 8, 11, 12mp3an 1314 . . . 4  |-  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
)
141, 2shseli 24718 . . . 4  |-  ( 0h  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
) )
1513, 14mpbir 209 . . 3  |-  0h  e.  ( A  +H  B
)
164, 15pm3.2i 455 . 2  |-  ( ( A  +H  B ) 
C_  ~H  /\  0h  e.  ( A  +H  B
) )
171, 2shseli 24718 . . . . . 6  |-  ( x  e.  ( A  +H  B )  <->  E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w
) )
181, 2shseli 24718 . . . . . 6  |-  ( y  e.  ( A  +H  B )  <->  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u
) )
19 shaddcl 24618 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  SH  /\  z  e.  A  /\  v  e.  A )  ->  ( z  +h  v
)  e.  A )
201, 19mp3an1 1301 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  v  e.  A )  ->  ( z  +h  v
)  e.  A )
2120ad2ant2r 746 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( z  +h  v
)  e.  A )
2221ad2ant2r 746 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( z  +h  v )  e.  A
)
23 shaddcl 24618 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  SH  /\  w  e.  B  /\  u  e.  B )  ->  ( w  +h  u
)  e.  B )
242, 23mp3an1 1301 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  B  /\  u  e.  B )  ->  ( w  +h  u
)  e.  B )
2524ad2ant2l 745 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( w  +h  u
)  e.  B )
2625ad2ant2r 746 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( w  +h  u )  e.  B
)
27 oveq12 6099 . . . . . . . . . . . . . . 15  |-  ( ( x  =  ( z  +h  w )  /\  y  =  ( v  +h  u ) )  -> 
( x  +h  y
)  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
2827ad2ant2l 745 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( x  +h  y )  =  ( ( z  +h  w
)  +h  ( v  +h  u ) ) )
291sheli 24615 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  A  ->  z  e.  ~H )
301sheli 24615 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  A  ->  v  e.  ~H )
3129, 30anim12i 566 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  A  /\  v  e.  A )  ->  ( z  e.  ~H  /\  v  e.  ~H )
)
322sheli 24615 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  B  ->  w  e.  ~H )
332sheli 24615 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  B  ->  u  e.  ~H )
3432, 33anim12i 566 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  B  /\  u  e.  B )  ->  ( w  e.  ~H  /\  u  e.  ~H )
)
35 hvadd4 24437 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  ~H  /\  v  e.  ~H )  /\  ( w  e.  ~H  /\  u  e.  ~H )
)  ->  ( (
z  +h  v )  +h  ( w  +h  u ) )  =  ( ( z  +h  w )  +h  (
v  +h  u ) ) )
3631, 34, 35syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  A  /\  v  e.  A
)  /\  ( w  e.  B  /\  u  e.  B ) )  -> 
( ( z  +h  v )  +h  (
w  +h  u ) )  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
3736an4s 822 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( ( z  +h  v )  +h  (
w  +h  u ) )  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
3837ad2ant2r 746 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( ( z  +h  v )  +h  ( w  +h  u
) )  =  ( ( z  +h  w
)  +h  ( v  +h  u ) ) )
3928, 38eqtr4d 2477 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( x  +h  y )  =  ( ( z  +h  v
)  +h  ( w  +h  u ) ) )
40 rspceov 6127 . . . . . . . . . . . . 13  |-  ( ( ( z  +h  v
)  e.  A  /\  ( w  +h  u
)  e.  B  /\  ( x  +h  y
)  =  ( ( z  +h  v )  +h  ( w  +h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4122, 26, 39, 40syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4241ancoms 453 . . . . . . . . . . 11  |-  ( ( ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) )  /\  ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4342exp43 612 . . . . . . . . . 10  |-  ( ( v  e.  A  /\  u  e.  B )  ->  ( y  =  ( v  +h  u )  ->  ( ( z  e.  A  /\  w  e.  B )  ->  (
x  =  ( z  +h  w )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) ) ) ) )
4443rexlimivv 2845 . . . . . . . . 9  |-  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  (
( z  e.  A  /\  w  e.  B
)  ->  ( x  =  ( z  +h  w )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) ) )
4544com3l 81 . . . . . . . 8  |-  ( ( z  e.  A  /\  w  e.  B )  ->  ( x  =  ( z  +h  w )  ->  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u
)  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) ) )
4645rexlimivv 2845 . . . . . . 7  |-  ( E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w )  ->  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) )
4746imp 429 . . . . . 6  |-  ( ( E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w )  /\  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4817, 18, 47syl2anb 479 . . . . 5  |-  ( ( x  e.  ( A  +H  B )  /\  y  e.  ( A  +H  B ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
491, 2shseli 24718 . . . . 5  |-  ( ( x  +h  y )  e.  ( A  +H  B )  <->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) )
5048, 49sylibr 212 . . . 4  |-  ( ( x  e.  ( A  +H  B )  /\  y  e.  ( A  +H  B ) )  -> 
( x  +h  y
)  e.  ( A  +H  B ) )
5150rgen2a 2781 . . 3  |-  A. x  e.  ( A  +H  B
) A. y  e.  ( A  +H  B
) ( x  +h  y )  e.  ( A  +H  B )
52 shmulcl 24619 . . . . . . . . . . . . . 14  |-  ( ( A  e.  SH  /\  x  e.  CC  /\  v  e.  A )  ->  (
x  .h  v )  e.  A )
531, 52mp3an1 1301 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  v  e.  A )  ->  ( x  .h  v
)  e.  A )
5453adantrr 716 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  v
)  e.  A )
55 shmulcl 24619 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  SH  /\  x  e.  CC  /\  u  e.  B )  ->  (
x  .h  u )  e.  B )
562, 55mp3an1 1301 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  u  e.  B )  ->  ( x  .h  u
)  e.  B )
5756adantrr 716 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) )  ->  (
x  .h  u )  e.  B )
5857adantrl 715 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  u
)  e.  B )
59 oveq2 6098 . . . . . . . . . . . . . . 15  |-  ( y  =  ( v  +h  u )  ->  (
x  .h  y )  =  ( x  .h  ( v  +h  u
) ) )
6059adantl 466 . . . . . . . . . . . . . 14  |-  ( ( u  e.  B  /\  y  =  ( v  +h  u ) )  -> 
( x  .h  y
)  =  ( x  .h  ( v  +h  u ) ) )
6160ad2antll 728 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  y
)  =  ( x  .h  ( v  +h  u ) ) )
62 id 22 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  x  e.  CC )
63 ax-hvdistr1 24409 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
x  .h  ( v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u
) ) )
6462, 30, 33, 63syl3an 1260 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  v  e.  A  /\  u  e.  B )  ->  ( x  .h  (
v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
65643expb 1188 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  u  e.  B
) )  ->  (
x  .h  ( v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u
) ) )
6665adantrrr 724 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  (
v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
6761, 66eqtrd 2474 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  y
)  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
68 rspceov 6127 . . . . . . . . . . . 12  |-  ( ( ( x  .h  v
)  e.  A  /\  ( x  .h  u
)  e.  B  /\  ( x  .h  y
)  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
6954, 58, 67, 68syl3anc 1218 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
7069ancoms 453 . . . . . . . . . 10  |-  ( ( ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) )  /\  x  e.  CC )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) )
7170exp42 611 . . . . . . . . 9  |-  ( v  e.  A  ->  (
u  e.  B  -> 
( y  =  ( v  +h  u )  ->  ( x  e.  CC  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) ) ) ) )
7271imp 429 . . . . . . . 8  |-  ( ( v  e.  A  /\  u  e.  B )  ->  ( y  =  ( v  +h  u )  ->  ( x  e.  CC  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) ) ) )
7372rexlimivv 2845 . . . . . . 7  |-  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  (
x  e.  CC  ->  E. f  e.  A  E. g  e.  B  (
x  .h  y )  =  ( f  +h  g ) ) )
7473impcom 430 . . . . . 6  |-  ( ( x  e.  CC  /\  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
7518, 74sylan2b 475 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  ( A  +H  B ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
761, 2shseli 24718 . . . . 5  |-  ( ( x  .h  y )  e.  ( A  +H  B )  <->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) )
7775, 76sylibr 212 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  ( A  +H  B ) )  -> 
( x  .h  y
)  e.  ( A  +H  B ) )
7877rgen2 2811 . . 3  |-  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B )
7951, 78pm3.2i 455 . 2  |-  ( A. x  e.  ( A  +H  B ) A. y  e.  ( A  +H  B
) ( x  +h  y )  e.  ( A  +H  B )  /\  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B ) )
80 issh2 24610 . 2  |-  ( ( A  +H  B )  e.  SH  <->  ( (
( A  +H  B
)  C_  ~H  /\  0h  e.  ( A  +H  B
) )  /\  ( A. x  e.  ( A  +H  B ) A. y  e.  ( A  +H  B ) ( x  +h  y )  e.  ( A  +H  B
)  /\  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B ) ) ) )
8116, 79, 80mpbir2an 911 1  |-  ( A  +H  B )  e.  SH
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   E.wrex 2715    C_ wss 3327  (class class class)co 6090   CCcc 9279   ~Hchil 24320    +h cva 24321    .h csm 24322   0hc0v 24325   SHcsh 24329    +H cph 24332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-hilex 24400  ax-hfvadd 24401  ax-hvcom 24402  ax-hvass 24403  ax-hv0cl 24404  ax-hvaddid 24405  ax-hfvmul 24406  ax-hvmulid 24407  ax-hvdistr1 24409  ax-hvdistr2 24410  ax-hvmul0 24411
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-po 4640  df-so 4641  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-ltxr 9422  df-sub 9596  df-neg 9597  df-grpo 23677  df-ablo 23768  df-hvsub 24372  df-sh 24608  df-shs 24710
This theorem is referenced by:  shscl  24720  shsval2i  24789  shjshsi  24894  spanuni  24946  5oalem1  25056  5oalem3  25058  5oalem5  25060  5oalem6  25061  5oai  25063  3oalem2  25065  3oalem6  25069  mayete3i  25130  mayete3iOLD  25131  sumdmdlem  25821
  Copyright terms: Public domain W3C validator