HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscl Structured version   Unicode version

Theorem shscl 26663
Description: Closure of subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shscl  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  e.  SH )

Proof of Theorem shscl
StepHypRef Expression
1 oveq1 6287 . . 3  |-  ( A  =  if ( A  e.  SH ,  A ,  ~H )  ->  ( A  +H  B )  =  ( if ( A  e.  SH ,  A ,  ~H )  +H  B
) )
21eleq1d 2473 . 2  |-  ( A  =  if ( A  e.  SH ,  A ,  ~H )  ->  (
( A  +H  B
)  e.  SH  <->  ( if ( A  e.  SH ,  A ,  ~H )  +H  B )  e.  SH ) )
3 oveq2 6288 . . 3  |-  ( B  =  if ( B  e.  SH ,  B ,  ~H )  ->  ( if ( A  e.  SH ,  A ,  ~H )  +H  B )  =  ( if ( A  e.  SH ,  A ,  ~H )  +H  if ( B  e.  SH ,  B ,  ~H )
) )
43eleq1d 2473 . 2  |-  ( B  =  if ( B  e.  SH ,  B ,  ~H )  ->  (
( if ( A  e.  SH ,  A ,  ~H )  +H  B
)  e.  SH  <->  ( if ( A  e.  SH ,  A ,  ~H )  +H  if ( B  e.  SH ,  B ,  ~H ) )  e.  SH ) )
5 helsh 26590 . . . 4  |-  ~H  e.  SH
65elimel 3949 . . 3  |-  if ( A  e.  SH ,  A ,  ~H )  e.  SH
75elimel 3949 . . 3  |-  if ( B  e.  SH ,  B ,  ~H )  e.  SH
86, 7shscli 26662 . 2  |-  ( if ( A  e.  SH ,  A ,  ~H )  +H  if ( B  e.  SH ,  B ,  ~H ) )  e.  SH
92, 4, 8dedth2h 3939 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  e.  SH )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844   ifcif 3887  (class class class)co 6280   ~Hchil 26263   SHcsh 26272    +H cph 26275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-hilex 26343  ax-hfvadd 26344  ax-hvcom 26345  ax-hvass 26346  ax-hv0cl 26347  ax-hvaddid 26348  ax-hfvmul 26349  ax-hvmulid 26350  ax-hvdistr1 26352  ax-hvdistr2 26353  ax-hvmul0 26354
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-ltxr 9665  df-sub 9845  df-neg 9846  df-nn 10579  df-grpo 25620  df-ablo 25711  df-hvsub 26315  df-hlim 26316  df-sh 26551  df-ch 26566  df-shs 26653
This theorem is referenced by:  shsvs  26668  spanpr  26925  chscllem2  26983  chscl  26986
  Copyright terms: Public domain W3C validator