HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmodsi Structured version   Unicode version

Theorem shmodsi 26508
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shmod.1  |-  A  e.  SH
shmod.2  |-  B  e.  SH
shmod.3  |-  C  e.  SH
Assertion
Ref Expression
shmodsi  |-  ( A 
C_  C  ->  (
( A  +H  B
)  i^i  C )  C_  ( A  +H  ( B  i^i  C ) ) )

Proof of Theorem shmodsi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3673 . . 3  |-  ( z  e.  ( ( A  +H  B )  i^i 
C )  <->  ( z  e.  ( A  +H  B
)  /\  z  e.  C ) )
2 shmod.1 . . . . . . 7  |-  A  e.  SH
3 shmod.2 . . . . . . 7  |-  B  e.  SH
42, 3shseli 26435 . . . . . 6  |-  ( z  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  z  =  ( x  +h  y
) )
5 shmod.3 . . . . . . . . . . . . . . 15  |-  C  e.  SH
65sheli 26332 . . . . . . . . . . . . . 14  |-  ( z  e.  C  ->  z  e.  ~H )
72sheli 26332 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  x  e.  ~H )
83sheli 26332 . . . . . . . . . . . . . 14  |-  ( y  e.  B  ->  y  e.  ~H )
9 hvsubadd 26195 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ~H  /\  x  e.  ~H  /\  y  e.  ~H )  ->  (
( z  -h  x
)  =  y  <->  ( x  +h  y )  =  z ) )
106, 7, 8, 9syl3an 1268 . . . . . . . . . . . . 13  |-  ( ( z  e.  C  /\  x  e.  A  /\  y  e.  B )  ->  ( ( z  -h  x )  =  y  <-> 
( x  +h  y
)  =  z ) )
11 eqcom 2463 . . . . . . . . . . . . 13  |-  ( ( x  +h  y )  =  z  <->  z  =  ( x  +h  y
) )
1210, 11syl6bb 261 . . . . . . . . . . . 12  |-  ( ( z  e.  C  /\  x  e.  A  /\  y  e.  B )  ->  ( ( z  -h  x )  =  y  <-> 
z  =  ( x  +h  y ) ) )
13123expb 1195 . . . . . . . . . . 11  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
( z  -h  x
)  =  y  <->  z  =  ( x  +h  y
) ) )
145, 2shsvsi 26486 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  C  /\  x  e.  A )  ->  ( z  -h  x
)  e.  ( C  +H  A ) )
155, 2shscomi 26482 . . . . . . . . . . . . . . . . . . . 20  |-  ( C  +H  A )  =  ( A  +H  C
)
1614, 15syl6eleq 2552 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  C  /\  x  e.  A )  ->  ( z  -h  x
)  e.  ( A  +H  C ) )
172, 5shlesb1i 26505 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A 
C_  C  <->  ( A  +H  C )  =  C )
1817biimpi 194 . . . . . . . . . . . . . . . . . . . 20  |-  ( A 
C_  C  ->  ( A  +H  C )  =  C )
1918eleq2d 2524 . . . . . . . . . . . . . . . . . . 19  |-  ( A 
C_  C  ->  (
( z  -h  x
)  e.  ( A  +H  C )  <->  ( z  -h  x )  e.  C
) )
2016, 19syl5ib 219 . . . . . . . . . . . . . . . . . 18  |-  ( A 
C_  C  ->  (
( z  e.  C  /\  x  e.  A
)  ->  ( z  -h  x )  e.  C
) )
21 eleq1 2526 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  -h  x )  =  y  ->  (
( z  -h  x
)  e.  C  <->  y  e.  C ) )
2221biimpd 207 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  -h  x )  =  y  ->  (
( z  -h  x
)  e.  C  -> 
y  e.  C ) )
2320, 22sylan9 655 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( z  e.  C  /\  x  e.  A )  ->  y  e.  C ) )
2423anim2d 563 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( y  e.  B  /\  (
z  e.  C  /\  x  e.  A )
)  ->  ( y  e.  B  /\  y  e.  C ) ) )
25 elin 3673 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e.  C ) )
2624, 25syl6ibr 227 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( y  e.  B  /\  (
z  e.  C  /\  x  e.  A )
)  ->  y  e.  ( B  i^i  C ) ) )
2726ex 432 . . . . . . . . . . . . . 14  |-  ( A 
C_  C  ->  (
( z  -h  x
)  =  y  -> 
( ( y  e.  B  /\  ( z  e.  C  /\  x  e.  A ) )  -> 
y  e.  ( B  i^i  C ) ) ) )
2827com13 80 . . . . . . . . . . . . 13  |-  ( ( y  e.  B  /\  ( z  e.  C  /\  x  e.  A
) )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
2928ancoms 451 . . . . . . . . . . . 12  |-  ( ( ( z  e.  C  /\  x  e.  A
)  /\  y  e.  B )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3029anasss 645 . . . . . . . . . . 11  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3113, 30sylbird 235 . . . . . . . . . 10  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
z  =  ( x  +h  y )  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3231imp 427 . . . . . . . . 9  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) )
333, 5shincli 26481 . . . . . . . . . . . . . . 15  |-  ( B  i^i  C )  e.  SH
342, 33shsvai 26483 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  y  e.  ( B  i^i  C ) )  -> 
( x  +h  y
)  e.  ( A  +H  ( B  i^i  C ) ) )
35 eleq1 2526 . . . . . . . . . . . . . 14  |-  ( z  =  ( x  +h  y )  ->  (
z  e.  ( A  +H  ( B  i^i  C ) )  <->  ( x  +h  y )  e.  ( A  +H  ( B  i^i  C ) ) ) )
3634, 35syl5ibr 221 . . . . . . . . . . . . 13  |-  ( z  =  ( x  +h  y )  ->  (
( x  e.  A  /\  y  e.  ( B  i^i  C ) )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
3736expd 434 . . . . . . . . . . . 12  |-  ( z  =  ( x  +h  y )  ->  (
x  e.  A  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
3837com12 31 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
z  =  ( x  +h  y )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
3938ad2antrl 725 . . . . . . . . . 10  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
z  =  ( x  +h  y )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4039imp 427 . . . . . . . . 9  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4132, 40syld 44 . . . . . . . 8  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4241exp31 602 . . . . . . 7  |-  ( z  e.  C  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( z  =  ( x  +h  y )  ->  ( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) ) )
4342rexlimdvv 2952 . . . . . 6  |-  ( z  e.  C  ->  ( E. x  e.  A  E. y  e.  B  z  =  ( x  +h  y )  ->  ( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
444, 43syl5bi 217 . . . . 5  |-  ( z  e.  C  ->  (
z  e.  ( A  +H  B )  -> 
( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4544com13 80 . . . 4  |-  ( A 
C_  C  ->  (
z  e.  ( A  +H  B )  -> 
( z  e.  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4645impd 429 . . 3  |-  ( A 
C_  C  ->  (
( z  e.  ( A  +H  B )  /\  z  e.  C
)  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
471, 46syl5bi 217 . 2  |-  ( A 
C_  C  ->  (
z  e.  ( ( A  +H  B )  i^i  C )  -> 
z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4847ssrdv 3495 1  |-  ( A 
C_  C  ->  (
( A  +H  B
)  i^i  C )  C_  ( A  +H  ( B  i^i  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805    i^i cin 3460    C_ wss 3461  (class class class)co 6270   ~Hchil 26037    +h cva 26038    -h cmv 26043   SHcsh 26046    +H cph 26049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-hilex 26117  ax-hfvadd 26118  ax-hvcom 26119  ax-hvass 26120  ax-hv0cl 26121  ax-hvaddid 26122  ax-hfvmul 26123  ax-hvmulid 26124  ax-hvdistr1 26126  ax-hvdistr2 26127  ax-hvmul0 26128
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-ltxr 9622  df-sub 9798  df-neg 9799  df-nn 10532  df-grpo 25394  df-ablo 25485  df-hvsub 26089  df-hlim 26090  df-sh 26325  df-ch 26340  df-shs 26427
This theorem is referenced by:  shmodi  26509
  Copyright terms: Public domain W3C validator