MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftidt2 Structured version   Visualization version   Unicode version

Theorem shftidt2 13193
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftidt2  |-  ( F 
shift  0 )  =  ( F  |`  CC )

Proof of Theorem shftidt2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subid1 9920 . . . . 5  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
21breq1d 4426 . . . 4  |-  ( x  e.  CC  ->  (
( x  -  0 ) F y  <->  x F
y ) )
32pm5.32i 647 . . 3  |-  ( ( x  e.  CC  /\  ( x  -  0
) F y )  <-> 
( x  e.  CC  /\  x F y ) )
43opabbii 4481 . 2  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  0
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  x F y ) }
5 0cn 9661 . . 3  |-  0  e.  CC
6 shftfval.1 . . . 4  |-  F  e. 
_V
76shftfval 13182 . . 3  |-  ( 0  e.  CC  ->  ( F  shift  0 )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  0 ) F y ) } )
85, 7ax-mp 5 . 2  |-  ( F 
shift  0 )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  0 ) F y ) }
9 dfres2 5176 . 2  |-  ( F  |`  CC )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  x F y ) }
104, 8, 93eqtr4i 2494 1  |-  ( F 
shift  0 )  =  ( F  |`  CC )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 375    = wceq 1455    e. wcel 1898   _Vcvv 3057   class class class wbr 4416   {copab 4474    |` cres 4855  (class class class)co 6315   CCcc 9563   0cc0 9565    - cmin 9886    shift cshi 13178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-po 4774  df-so 4775  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-er 7389  df-en 7596  df-dom 7597  df-sdom 7598  df-pnf 9703  df-mnf 9704  df-ltxr 9706  df-sub 9888  df-shft 13179
This theorem is referenced by:  shftidt  13194
  Copyright terms: Public domain W3C validator