MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfn Structured version   Unicode version

Theorem shftfn 13057
Description: Functionality and domain of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfn  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem shftfn
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4951 . . . . 5  |-  Rel  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
21a1i 11 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Rel  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
3 fnfun 5661 . . . . . 6  |-  ( F  Fn  B  ->  Fun  F )
43adantr 465 . . . . 5  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  F )
5 funmo 5587 . . . . . . 7  |-  ( Fun 
F  ->  E* w
( z  -  A
) F w )
6 vex 3064 . . . . . . . . . 10  |-  z  e. 
_V
7 vex 3064 . . . . . . . . . 10  |-  w  e. 
_V
8 eleq1 2476 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  e.  CC  <->  z  e.  CC ) )
9 oveq1 6287 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  -  A )  =  ( z  -  A ) )
109breq1d 4407 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( x  -  A
) F y  <->  ( z  -  A ) F y ) )
118, 10anbi12d 711 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( z  e.  CC  /\  ( z  -  A
) F y ) ) )
12 breq2 4401 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( z  -  A
) F y  <->  ( z  -  A ) F w ) )
1312anbi2d 704 . . . . . . . . . 10  |-  ( y  =  w  ->  (
( z  e.  CC  /\  ( z  -  A
) F y )  <-> 
( z  e.  CC  /\  ( z  -  A
) F w ) ) )
14 eqid 2404 . . . . . . . . . 10  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
156, 7, 11, 13, 14brab 4715 . . . . . . . . 9  |-  ( z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w  <->  ( z  e.  CC  /\  ( z  -  A
) F w ) )
1615simprbi 464 . . . . . . . 8  |-  ( z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w  ->  ( z  -  A
) F w )
1716moimi 2294 . . . . . . 7  |-  ( E* w ( z  -  A ) F w  ->  E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
185, 17syl 17 . . . . . 6  |-  ( Fun 
F  ->  E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
1918alrimiv 1742 . . . . 5  |-  ( Fun 
F  ->  A. z E* w  z { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
204, 19syl 17 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  A. z E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
21 dffun6 5586 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  <->  ( Rel  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  /\  A. z E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
) )
222, 20, 21sylanbrc 664 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
23 shftfval.1 . . . . . 6  |-  F  e. 
_V
2423shftfval 13054 . . . . 5  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
2524adantl 466 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
2625funeqd 5592 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( Fun  ( F 
shift  A )  <->  Fun  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } ) )
2722, 26mpbird 234 . 2  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  ( F  shift  A ) )
2823shftdm 13055 . . 3  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e. 
dom  F } )
29 fndm 5663 . . . . 5  |-  ( F  Fn  B  ->  dom  F  =  B )
3029eleq2d 2474 . . . 4  |-  ( F  Fn  B  ->  (
( x  -  A
)  e.  dom  F  <->  ( x  -  A )  e.  B ) )
3130rabbidv 3053 . . 3  |-  ( F  Fn  B  ->  { x  e.  CC  |  ( x  -  A )  e. 
dom  F }  =  { x  e.  CC  |  ( x  -  A )  e.  B } )
3228, 31sylan9eqr 2467 . 2  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  B } )
33 df-fn 5574 . 2  |-  ( ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } 
<->  ( Fun  ( F 
shift  A )  /\  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  B } ) )
3427, 32, 33sylanbrc 664 1  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1405    = wceq 1407    e. wcel 1844   E*wmo 2241   {crab 2760   _Vcvv 3061   class class class wbr 4397   {copab 4454   dom cdm 4825   Rel wrel 4830   Fun wfun 5565    Fn wfn 5566  (class class class)co 6280   CCcc 9522    - cmin 9843    shift cshi 13050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-po 4746  df-so 4747  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-ltxr 9665  df-sub 9845  df-shft 13051
This theorem is referenced by:  shftf  13063  seqshft  13069  uzmptshftfval  36112
  Copyright terms: Public domain W3C validator