MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfib Structured version   Unicode version

Theorem shftfib 12990
Description: Value of a fiber of the relation  F. (Contributed by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfib  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) } ) )

Proof of Theorem shftfib
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . 7  |-  F  e. 
_V
21shftfval 12988 . . . . . 6  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
32breqd 4450 . . . . 5  |-  ( A  e.  CC  ->  ( B ( F  shift  A ) z  <->  B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z ) )
4 vex 3109 . . . . . 6  |-  z  e. 
_V
5 eleq1 2526 . . . . . . . 8  |-  ( x  =  B  ->  (
x  e.  CC  <->  B  e.  CC ) )
6 oveq1 6277 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  -  A )  =  ( B  -  A ) )
76breq1d 4449 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  -  A
) F y  <->  ( B  -  A ) F y ) )
85, 7anbi12d 708 . . . . . . 7  |-  ( x  =  B  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F y ) ) )
9 breq2 4443 . . . . . . . 8  |-  ( y  =  z  ->  (
( B  -  A
) F y  <->  ( B  -  A ) F z ) )
109anbi2d 701 . . . . . . 7  |-  ( y  =  z  ->  (
( B  e.  CC  /\  ( B  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
11 eqid 2454 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
128, 10, 11brabg 4755 . . . . . 6  |-  ( ( B  e.  CC  /\  z  e.  _V )  ->  ( B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
134, 12mpan2 669 . . . . 5  |-  ( B  e.  CC  ->  ( B { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
143, 13sylan9bb 697 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ( F 
shift  A ) z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
15 ibar 502 . . . . 5  |-  ( B  e.  CC  ->  (
( B  -  A
) F z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
1615adantl 464 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B  -  A ) F z  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
1714, 16bitr4d 256 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ( F 
shift  A ) z  <->  ( B  -  A ) F z ) )
1817abbidv 2590 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  { z  |  B
( F  shift  A ) z }  =  {
z  |  ( B  -  A ) F z } )
19 imasng 5347 . . 3  |-  ( B  e.  CC  ->  (
( F  shift  A )
" { B }
)  =  { z  |  B ( F 
shift  A ) z } )
2019adantl 464 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  {
z  |  B ( F  shift  A )
z } )
21 ovex 6298 . . 3  |-  ( B  -  A )  e. 
_V
22 imasng 5347 . . 3  |-  ( ( B  -  A )  e.  _V  ->  ( F " { ( B  -  A ) } )  =  { z  |  ( B  -  A ) F z } )
2321, 22mp1i 12 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F " {
( B  -  A
) } )  =  { z  |  ( B  -  A ) F z } )
2418, 20, 233eqtr4d 2505 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   {cab 2439   _Vcvv 3106   {csn 4016   class class class wbr 4439   {copab 4496   "cima 4991  (class class class)co 6270   CCcc 9479    - cmin 9796    shift cshi 12984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-ltxr 9622  df-sub 9798  df-shft 12985
This theorem is referenced by:  shftval  12992
  Copyright terms: Public domain W3C validator