Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sharhght Structured version   Unicode version

Theorem sharhght 29747
Description: Let  A B C be a triangle, and let  D lie on the line  A B. Then (doubled) areas of triangles  A D C and  C D B relate as lengths of corresponding bases  A D and  D B. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
sharhght.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
sharhght.b  |-  ( ph  ->  ( D  e.  CC  /\  ( ( A  -  D ) G ( B  -  D ) )  =  0 ) )
Assertion
Ref Expression
sharhght  |-  ( ph  ->  ( ( ( C  -  A ) G ( D  -  A
) )  x.  ( B  -  D )
)  =  ( ( ( C  -  B
) G ( D  -  B ) )  x.  ( A  -  D ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem sharhght
StepHypRef Expression
1 sharhght.a . . . . . . . . 9  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
21simp3d 995 . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
31simp1d 993 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
42, 3subcld 9707 . . . . . . 7  |-  ( ph  ->  ( C  -  A
)  e.  CC )
54adantr 462 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  ( C  -  A )  e.  CC )
6 sharhght.b . . . . . . . . 9  |-  ( ph  ->  ( D  e.  CC  /\  ( ( A  -  D ) G ( B  -  D ) )  =  0 ) )
76simpld 456 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
87, 3subcld 9707 . . . . . . 7  |-  ( ph  ->  ( D  -  A
)  e.  CC )
98adantr 462 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  ( D  -  A )  e.  CC )
10 sharhght.sigar . . . . . . 7  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
1110sigarim 29733 . . . . . 6  |-  ( ( ( C  -  A
)  e.  CC  /\  ( D  -  A
)  e.  CC )  ->  ( ( C  -  A ) G ( D  -  A
) )  e.  RR )
125, 9, 11syl2anc 654 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  e.  RR )
1312recnd 9400 . . . 4  |-  ( (
ph  /\  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  e.  CC )
1413mul01d 9556 . . 3  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  0 )  =  0 )
151simp2d 994 . . . . . 6  |-  ( ph  ->  B  e.  CC )
1615adantr 462 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  B  e.  CC )
17 simpr 458 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  B  =  D )
1816, 17subeq0bd 9762 . . . 4  |-  ( (
ph  /\  B  =  D )  ->  ( B  -  D )  =  0 )
1918oveq2d 6096 . . 3  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  ( B  -  D ) )  =  ( ( ( C  -  A ) G ( D  -  A ) )  x.  0 ) )
202, 15subcld 9707 . . . . . . . 8  |-  ( ph  ->  ( C  -  B
)  e.  CC )
2120adantr 462 . . . . . . 7  |-  ( (
ph  /\  B  =  D )  ->  ( C  -  B )  e.  CC )
227, 15subcld 9707 . . . . . . . 8  |-  ( ph  ->  ( D  -  B
)  e.  CC )
2322adantr 462 . . . . . . 7  |-  ( (
ph  /\  B  =  D )  ->  ( D  -  B )  e.  CC )
2410sigarval 29732 . . . . . . 7  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  B
)  e.  CC )  ->  ( ( C  -  B ) G ( D  -  B
) )  =  ( Im `  ( ( * `  ( C  -  B ) )  x.  ( D  -  B ) ) ) )
2521, 23, 24syl2anc 654 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  (
( C  -  B
) G ( D  -  B ) )  =  ( Im `  ( ( * `  ( C  -  B
) )  x.  ( D  -  B )
) ) )
267adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  B  =  D )  ->  D  e.  CC )
2717eqcomd 2438 . . . . . . . . . 10  |-  ( (
ph  /\  B  =  D )  ->  D  =  B )
2826, 27subeq0bd 9762 . . . . . . . . 9  |-  ( (
ph  /\  B  =  D )  ->  ( D  -  B )  =  0 )
2928oveq2d 6096 . . . . . . . 8  |-  ( (
ph  /\  B  =  D )  ->  (
( * `  ( C  -  B )
)  x.  ( D  -  B ) )  =  ( ( * `
 ( C  -  B ) )  x.  0 ) )
3021cjcld 12669 . . . . . . . . 9  |-  ( (
ph  /\  B  =  D )  ->  (
* `  ( C  -  B ) )  e.  CC )
3130mul01d 9556 . . . . . . . 8  |-  ( (
ph  /\  B  =  D )  ->  (
( * `  ( C  -  B )
)  x.  0 )  =  0 )
3229, 31eqtrd 2465 . . . . . . 7  |-  ( (
ph  /\  B  =  D )  ->  (
( * `  ( C  -  B )
)  x.  ( D  -  B ) )  =  0 )
3332fveq2d 5683 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  (
Im `  ( (
* `  ( C  -  B ) )  x.  ( D  -  B
) ) )  =  ( Im `  0
) )
34 0re 9374 . . . . . . . 8  |-  0  e.  RR
3534a1i 11 . . . . . . 7  |-  ( (
ph  /\  B  =  D )  ->  0  e.  RR )
3635reim0d 12698 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  (
Im `  0 )  =  0 )
3725, 33, 363eqtrd 2469 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  (
( C  -  B
) G ( D  -  B ) )  =  0 )
3837oveq1d 6095 . . . 4  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D ) )  =  ( 0  x.  ( A  -  D
) ) )
393adantr 462 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  A  e.  CC )
4039, 26subcld 9707 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  ( A  -  D )  e.  CC )
4140mul02d 9555 . . . 4  |-  ( (
ph  /\  B  =  D )  ->  (
0  x.  ( A  -  D ) )  =  0 )
4238, 41eqtrd 2465 . . 3  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D ) )  =  0 )
4314, 19, 423eqtr4d 2475 . 2  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  ( B  -  D ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D
) ) )
442adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  C  e.  CC )
4515adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  B  e.  CC )
463adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  A  e.  CC )
4744, 45, 46npncand 9731 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
)  +  ( B  -  A ) )  =  ( C  -  A ) )
4847oveq1d 6095 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B )  +  ( B  -  A ) ) G ( D  -  A ) )  =  ( ( C  -  A ) G ( D  -  A
) ) )
4944, 45subcld 9707 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( C  -  B )  e.  CC )
508adantr 462 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  -  A )  e.  CC )
5145, 46subcld 9707 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( B  -  A )  e.  CC )
5210sigaraf 29735 . . . . . . . 8  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  A
)  e.  CC  /\  ( B  -  A
)  e.  CC )  ->  ( ( ( C  -  B )  +  ( B  -  A ) ) G ( D  -  A
) )  =  ( ( ( C  -  B ) G ( D  -  A ) )  +  ( ( B  -  A ) G ( D  -  A ) ) ) )
5349, 50, 51, 52syl3anc 1211 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B )  +  ( B  -  A ) ) G ( D  -  A ) )  =  ( ( ( C  -  B ) G ( D  -  A ) )  +  ( ( B  -  A ) G ( D  -  A ) ) ) )
5448, 53eqtr3d 2467 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  =  ( ( ( C  -  B ) G ( D  -  A ) )  +  ( ( B  -  A ) G ( D  -  A ) ) ) )
556simprd 460 . . . . . . . . 9  |-  ( ph  ->  ( ( A  -  D ) G ( B  -  D ) )  =  0 )
5655adantr 462 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( A  -  D
) G ( B  -  D ) )  =  0 )
577adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  D  e.  CC )
5810sigarperm 29742 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
( A  -  D
) G ( B  -  D ) )  =  ( ( B  -  A ) G ( D  -  A
) ) )
5946, 45, 57, 58syl3anc 1211 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( A  -  D
) G ( B  -  D ) )  =  ( ( B  -  A ) G ( D  -  A
) ) )
6056, 59eqtr3d 2467 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  0  =  ( ( B  -  A ) G ( D  -  A
) ) )
6160oveq2d 6096 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  A ) )  +  0 )  =  ( ( ( C  -  B ) G ( D  -  A ) )  +  ( ( B  -  A ) G ( D  -  A ) ) ) )
6210sigarim 29733 . . . . . . . . 9  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  A
)  e.  CC )  ->  ( ( C  -  B ) G ( D  -  A
) )  e.  RR )
6349, 50, 62syl2anc 654 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( D  -  A ) )  e.  RR )
6463recnd 9400 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( D  -  A ) )  e.  CC )
6564addid1d 9557 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  A ) )  +  0 )  =  ( ( C  -  B ) G ( D  -  A
) ) )
6654, 61, 653eqtr2d 2471 . . . . 5  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  =  ( ( C  -  B ) G ( D  -  A
) ) )
6745, 57negsubdi2d 9723 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  B  =  D )  ->  -u ( B  -  D )  =  ( D  -  B ) )
6867eqcomd 2438 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  -  B )  =  -u ( B  -  D ) )
6968oveq1d 6095 . . . . . . . . . 10  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( D  -  B
)  /  ( B  -  D ) )  =  ( -u ( B  -  D )  /  ( B  -  D ) ) )
7045, 57subcld 9707 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  B  =  D )  ->  ( B  -  D )  e.  CC )
71 simpr 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  B  =  D )  ->  -.  B  =  D )
7271neneqad 2671 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  B  =  D )  ->  B  =/=  D )
7345, 57, 72subne0d 9716 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  B  =  D )  ->  ( B  -  D )  =/=  0 )
7470, 70, 73divnegd 10108 . . . . . . . . . 10  |-  ( (
ph  /\  -.  B  =  D )  ->  -u (
( B  -  D
)  /  ( B  -  D ) )  =  ( -u ( B  -  D )  /  ( B  -  D ) ) )
7570, 73dividd 10093 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( B  -  D
)  /  ( B  -  D ) )  =  1 )
7675negeqd 9592 . . . . . . . . . 10  |-  ( (
ph  /\  -.  B  =  D )  ->  -u (
( B  -  D
)  /  ( B  -  D ) )  =  -u 1 )
7769, 74, 763eqtr2d 2471 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( D  -  B
)  /  ( B  -  D ) )  =  -u 1 )
7877oveq1d 6095 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( D  -  B )  /  ( B  -  D )
)  x.  ( A  -  D ) )  =  ( -u 1  x.  ( A  -  D
) ) )
7946, 57subcld 9707 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  ( A  -  D )  e.  CC )
8079mulm1d 9784 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( -u 1  x.  ( A  -  D ) )  =  -u ( A  -  D ) )
8146, 57negsubdi2d 9723 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  -u ( A  -  D )  =  ( D  -  A ) )
8278, 80, 813eqtrd 2469 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( D  -  B )  /  ( B  -  D )
)  x.  ( A  -  D ) )  =  ( D  -  A ) )
8357, 45subcld 9707 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  -  B )  e.  CC )
8483, 70, 79, 73div32d 10118 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( D  -  B )  /  ( B  -  D )
)  x.  ( A  -  D ) )  =  ( ( D  -  B )  x.  ( ( A  -  D )  /  ( B  -  D )
) ) )
8582, 84eqtr3d 2467 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  -  A )  =  ( ( D  -  B )  x.  ( ( A  -  D )  /  ( B  -  D )
) ) )
8685oveq2d 6096 . . . . 5  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( D  -  A ) )  =  ( ( C  -  B ) G ( ( D  -  B )  x.  (
( A  -  D
)  /  ( B  -  D ) ) ) ) )
8757, 46, 453jca 1161 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  e.  CC  /\  A  e.  CC  /\  B  e.  CC ) )
8810, 87, 71, 56sigardiv 29743 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( A  -  D
)  /  ( B  -  D ) )  e.  RR )
8910sigarls 29739 . . . . . 6  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  B
)  e.  CC  /\  ( ( A  -  D )  /  ( B  -  D )
)  e.  RR )  ->  ( ( C  -  B ) G ( ( D  -  B )  x.  (
( A  -  D
)  /  ( B  -  D ) ) ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( ( A  -  D )  /  ( B  -  D ) ) ) )
9049, 83, 88, 89syl3anc 1211 . . . . 5  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( ( D  -  B )  x.  ( ( A  -  D )  / 
( B  -  D
) ) ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( ( A  -  D )  /  ( B  -  D )
) ) )
9166, 86, 903eqtrd 2469 . . . 4  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( ( A  -  D )  /  ( B  -  D )
) ) )
9291oveq1d 6095 . . 3  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  ( B  -  D ) )  =  ( ( ( ( C  -  B
) G ( D  -  B ) )  x.  ( ( A  -  D )  / 
( B  -  D
) ) )  x.  ( B  -  D
) ) )
9310sigarim 29733 . . . . . 6  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  B
)  e.  CC )  ->  ( ( C  -  B ) G ( D  -  B
) )  e.  RR )
9493recnd 9400 . . . . 5  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  B
)  e.  CC )  ->  ( ( C  -  B ) G ( D  -  B
) )  e.  CC )
9549, 83, 94syl2anc 654 . . . 4  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( D  -  B ) )  e.  CC )
9679, 70, 73divcld 10095 . . . 4  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( A  -  D
)  /  ( B  -  D ) )  e.  CC )
9795, 96, 70mulassd 9397 . . 3  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( ( C  -  B ) G ( D  -  B
) )  x.  (
( A  -  D
)  /  ( B  -  D ) ) )  x.  ( B  -  D ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( ( ( A  -  D )  / 
( B  -  D
) )  x.  ( B  -  D )
) ) )
9879, 70, 73divcan1d 10096 . . . 4  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( A  -  D )  /  ( B  -  D )
)  x.  ( B  -  D ) )  =  ( A  -  D ) )
9998oveq2d 6096 . . 3  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  B ) )  x.  ( ( ( A  -  D
)  /  ( B  -  D ) )  x.  ( B  -  D ) ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D
) ) )
10092, 97, 993eqtrd 2469 . 2  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  ( B  -  D ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D
) ) )
10143, 100pm2.61dan 782 1  |-  ( ph  ->  ( ( ( C  -  A ) G ( D  -  A
) )  x.  ( B  -  D )
)  =  ( ( ( C  -  B
) G ( D  -  B ) )  x.  ( A  -  D ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   CCcc 9268   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275    - cmin 9583   -ucneg 9584    / cdiv 9981   *ccj 12569   Imcim 12571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-po 4628  df-so 4629  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-2 10368  df-cj 12572  df-re 12573  df-im 12574
This theorem is referenced by:  cevathlem2  29750
  Copyright terms: Public domain W3C validator