MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnp Structured version   Visualization version   Unicode version

Theorem sgnp 13230
Description: Proof that signum of positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnp  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  (sgn `  A )  =  1 )

Proof of Theorem sgnp
StepHypRef Expression
1 sgnval 13228 . . 3  |-  ( A  e.  RR*  ->  (sgn `  A )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) )
21adantr 472 . 2  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  (sgn `  A )  =  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) ) )
3 0xr 9705 . . . . 5  |-  0  e.  RR*
4 xrltne 11483 . . . . 5  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  < 
A )  ->  A  =/=  0 )
53, 4mp3an1 1377 . . . 4  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  A  =/=  0 )
65neneqd 2648 . . 3  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  -.  A  =  0 )
76iffalsed 3883 . 2  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  if ( A  =  0 ,  0 ,  if ( A  <  0 ,  -u 1 ,  1 ) )  =  if ( A  <  0 ,  -u 1 ,  1 ) )
8 xrltnsym 11459 . . . . 5  |-  ( ( 0  e.  RR*  /\  A  e.  RR* )  ->  (
0  <  A  ->  -.  A  <  0 ) )
93, 8mpan 684 . . . 4  |-  ( A  e.  RR*  ->  ( 0  <  A  ->  -.  A  <  0 ) )
109imp 436 . . 3  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  -.  A  <  0 )
1110iffalsed 3883 . 2  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  1 )
122, 7, 113eqtrd 2509 1  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  (sgn `  A )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   ifcif 3872   class class class wbr 4395   ` cfv 5589   0cc0 9557   1c1 9558   RR*cxr 9692    < clt 9693   -ucneg 9881  sgncsgn 13226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-i2m1 9625  ax-1ne0 9626  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-po 4760  df-so 4761  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-neg 9883  df-sgn 13227
This theorem is referenced by:  sgnrrp  13231  sgn1  13232  sgnpnf  13233  sgncl  29482  sgnmul  29486  sgnmulrp2  29487  sgnsub  29488  sgnpbi  29490
  Copyright terms: Public domain W3C validator