MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgmppw Structured version   Unicode version

Theorem sgmppw 23228
Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
sgmppw  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
Distinct variable groups:    A, k    k, N    P, k

Proof of Theorem sgmppw
Dummy variables  i  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 996 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  A  e.  CC )
2 simp2 997 . . . . 5  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  P  e.  Prime )
3 prmnn 14079 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3syl 16 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  P  e.  NN )
5 simp3 998 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  N  e.  NN0 )
64, 5nnexpcld 12299 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  NN )
7 sgmval 23172 . . 3  |-  ( ( A  e.  CC  /\  ( P ^ N )  e.  NN )  -> 
( A  sigma  ( P ^ N ) )  =  sum_ n  e.  {
x  e.  NN  |  x  ||  ( P ^ N ) }  (
n  ^c  A ) )
81, 6, 7syl2anc 661 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ( n  ^c  A ) )
9 oveq1 6291 . . 3  |-  ( n  =  ( P ^
k )  ->  (
n  ^c  A )  =  ( ( P ^ k )  ^c  A ) )
10 fzfid 12051 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  (
0 ... N )  e. 
Fin )
11 eqid 2467 . . . . 5  |-  ( i  e.  ( 0 ... N )  |->  ( P ^ i ) )  =  ( i  e.  ( 0 ... N
)  |->  ( P ^
i ) )
1211dvdsppwf1o 23218 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  NN0 )  ->  (
i  e.  ( 0 ... N )  |->  ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ N ) } )
132, 5, 12syl2anc 661 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  (
i  e.  ( 0 ... N )  |->  ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ N ) } )
14 oveq2 6292 . . . . 5  |-  ( i  =  k  ->  ( P ^ i )  =  ( P ^ k
) )
15 ovex 6309 . . . . 5  |-  ( P ^ k )  e. 
_V
1614, 11, 15fvmpt 5950 . . . 4  |-  ( k  e.  ( 0 ... N )  ->  (
( i  e.  ( 0 ... N ) 
|->  ( P ^ i
) ) `  k
)  =  ( P ^ k ) )
1716adantl 466 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( i  e.  ( 0 ... N ) 
|->  ( P ^ i
) ) `  k
)  =  ( P ^ k ) )
18 elrabi 3258 . . . . 5  |-  ( n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ->  n  e.  NN )
1918nncnd 10552 . . . 4  |-  ( n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ->  n  e.  CC )
20 cxpcl 22811 . . . 4  |-  ( ( n  e.  CC  /\  A  e.  CC )  ->  ( n  ^c  A )  e.  CC )
2119, 1, 20syl2anr 478 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  ( n  ^c  A )  e.  CC )
229, 10, 13, 17, 21fsumf1o 13508 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  sum_ n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ( n  ^c  A )  =  sum_ k  e.  ( 0 ... N ) ( ( P ^ k
)  ^c  A ) )
23 elfznn0 11770 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2423adantl 466 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2524nn0cnd 10854 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
261adantr 465 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
2725, 26mulcomd 9617 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
k  x.  A )  =  ( A  x.  k ) )
2827oveq2d 6300 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( P  ^c  ( A  x.  k ) ) )
294adantr 465 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  NN )
3029nnrpd 11255 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  RR+ )
3124nn0red 10853 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  RR )
3230, 31, 26cxpmuld 22871 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( ( P  ^c  k )  ^c  A ) )
3329nncnd 10552 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  CC )
34 cxpexp 22805 . . . . . . 7  |-  ( ( P  e.  CC  /\  k  e.  NN0 )  -> 
( P  ^c 
k )  =  ( P ^ k ) )
3533, 24, 34syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  k )  =  ( P ^
k ) )
3635oveq1d 6299 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( P  ^c 
k )  ^c  A )  =  ( ( P ^ k
)  ^c  A ) )
3732, 36eqtrd 2508 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( ( P ^ k )  ^c  A ) )
3833, 26, 24cxpmul2d 22846 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( A  x.  k ) )  =  ( ( P  ^c  A ) ^ k ) )
3928, 37, 383eqtr3d 2516 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( P ^ k
)  ^c  A )  =  ( ( P  ^c  A ) ^ k ) )
4039sumeq2dv 13488 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N
) ( ( P ^ k )  ^c  A )  =  sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
418, 22, 403eqtrd 2512 1  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {crab 2818   class class class wbr 4447    |-> cmpt 4505   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   CCcc 9490   0cc0 9492    x. cmul 9497   NNcn 10536   NN0cn0 10795   ...cfz 11672   ^cexp 12134   sum_csu 13471    || cdivides 13847   Primecprime 14076    ^c ccxp 22699    sigma csgm 23125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-dvds 13848  df-gcd 14004  df-prm 14077  df-pc 14220  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700  df-cxp 22701  df-sgm 23131
This theorem is referenced by:  1sgmprm  23230  1sgm2ppw  23231
  Copyright terms: Public domain W3C validator