MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsvalg Structured version   Unicode version

Theorem setsvalg 15088
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsvalg  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )

Proof of Theorem setsvalg
Dummy variables  e 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3031 . 2  |-  ( S  e.  V  ->  S  e.  _V )
2 elex 3031 . 2  |-  ( A  e.  W  ->  A  e.  _V )
3 resexg 5109 . . . . 5  |-  ( S  e.  _V  ->  ( S  |`  ( _V  \  dom  { A } ) )  e.  _V )
43adantr 466 . . . 4  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( S  |`  ( _V  \  dom  { A } ) )  e. 
_V )
5 snex 4605 . . . 4  |-  { A }  e.  _V
6 unexg 6550 . . . 4  |-  ( ( ( S  |`  ( _V  \  dom  { A } ) )  e. 
_V  /\  { A }  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
74, 5, 6sylancl 666 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
8 simpl 458 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  s  =  S )
9 simpr 462 . . . . . . . . 9  |-  ( ( s  =  S  /\  e  =  A )  ->  e  =  A )
109sneqd 3953 . . . . . . . 8  |-  ( ( s  =  S  /\  e  =  A )  ->  { e }  =  { A } )
1110dmeqd 4999 . . . . . . 7  |-  ( ( s  =  S  /\  e  =  A )  ->  dom  { e }  =  dom  { A } )
1211difeq2d 3526 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  ( _V  \  dom  { e } )  =  ( _V  \  dom  { A } ) )
138, 12reseq12d 5068 . . . . 5  |-  ( ( s  =  S  /\  e  =  A )  ->  ( s  |`  ( _V  \  dom  { e } ) )  =  ( S  |`  ( _V  \  dom  { A } ) ) )
1413, 10uneq12d 3564 . . . 4  |-  ( ( s  =  S  /\  e  =  A )  ->  ( ( s  |`  ( _V  \  dom  {
e } ) )  u.  { e } )  =  ( ( S  |`  ( _V  \  dom  { A }
) )  u.  { A } ) )
15 df-sets 15070 . . . 4  |- sSet  =  ( s  e.  _V , 
e  e.  _V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u. 
{ e } ) )
1614, 15ovmpt2ga 6384 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V  /\  (
( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )  -> 
( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
177, 16mpd3an3 1361 . 2  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
181, 2, 17syl2an 479 1  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   _Vcvv 3022    \ cdif 3376    u. cun 3377   {csn 3941   dom cdm 4796    |` cres 4798  (class class class)co 6249   sSet csts 15062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-res 4808  df-iota 5508  df-fun 5546  df-fv 5552  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-sets 15070
This theorem is referenced by:  setsval  15089  wunsets  15093  setsres  15094
  Copyright terms: Public domain W3C validator