MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setscom Structured version   Unicode version

Theorem setscom 14539
Description: Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
setscom.1  |-  A  e. 
_V
setscom.2  |-  B  e. 
_V
Assertion
Ref Expression
setscom  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )

Proof of Theorem setscom
StepHypRef Expression
1 rescom 5288 . . . . . 6  |-  ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  =  ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )
21uneq1i 3639 . . . . 5  |-  ( ( ( S  |`  ( _V  \  { A }
) )  |`  ( _V  \  { B }
) )  u.  { <. A ,  C >. } )  =  ( ( ( S  |`  ( _V  \  { B }
) )  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } )
32uneq1i 3639 . . . 4  |-  ( ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } )  =  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } )
4 un23 3648 . . . 4  |-  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } )  =  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } )  u.  { <. A ,  C >. } )
53, 4eqtri 2472 . . 3  |-  ( ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } )  =  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } )  u.  { <. A ,  C >. } )
6 setsval 14533 . . . . . . 7  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
76ad2ant2r 746 . . . . . 6  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
87reseq1d 5262 . . . . 5  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  =  ( ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  |`  ( _V  \  { B }
) ) )
9 resundir 5278 . . . . . 6  |-  ( ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } )  |`  ( _V  \  { B } ) )  =  ( ( ( S  |`  ( _V  \  { A }
) )  |`  ( _V  \  { B }
) )  u.  ( { <. A ,  C >. }  |`  ( _V  \  { B } ) ) )
10 setscom.1 . . . . . . . . . 10  |-  A  e. 
_V
11 elex 3104 . . . . . . . . . . 11  |-  ( C  e.  W  ->  C  e.  _V )
1211ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  C  e.  _V )
13 opelxpi 5021 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  C  e.  _V )  -> 
<. A ,  C >.  e.  ( _V  X.  _V ) )
1410, 12, 13sylancr 663 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  <. A ,  C >.  e.  ( _V  X.  _V ) )
15 opex 4701 . . . . . . . . . 10  |-  <. A ,  C >.  e.  _V
1615relsn 5096 . . . . . . . . 9  |-  ( Rel 
{ <. A ,  C >. }  <->  <. A ,  C >.  e.  ( _V  X.  _V ) )
1714, 16sylibr 212 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  Rel  { <. A ,  C >. } )
18 dmsnopss 5470 . . . . . . . . 9  |-  dom  { <. A ,  C >. } 
C_  { A }
19 disjsn2 4076 . . . . . . . . . . 11  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
2019ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( { A }  i^i  { B } )  =  (/) )
21 disj2 3860 . . . . . . . . . 10  |-  ( ( { A }  i^i  { B } )  =  (/) 
<->  { A }  C_  ( _V  \  { B } ) )
2220, 21sylib 196 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  { A }  C_  ( _V  \  { B }
) )
2318, 22syl5ss 3500 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  dom  { <. A ,  C >. }  C_  ( _V  \  { B } ) )
24 relssres 5301 . . . . . . . 8  |-  ( ( Rel  { <. A ,  C >. }  /\  dom  {
<. A ,  C >. } 
C_  ( _V  \  { B } ) )  ->  ( { <. A ,  C >. }  |`  ( _V  \  { B }
) )  =  { <. A ,  C >. } )
2517, 23, 24syl2anc 661 . . . . . . 7  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( { <. A ,  C >. }  |`  ( _V  \  { B }
) )  =  { <. A ,  C >. } )
2625uneq2d 3643 . . . . . 6  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u.  ( { <. A ,  C >. }  |`  ( _V  \  { B }
) ) )  =  ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } ) )
279, 26syl5eq 2496 . . . . 5  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  |`  ( _V  \  { B }
) )  =  ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } ) )
288, 27eqtrd 2484 . . . 4  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  =  ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } ) )
2928uneq1d 3642 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  =  ( ( ( ( S  |`  ( _V  \  { A } ) )  |`  ( _V  \  { B } ) )  u. 
{ <. A ,  C >. } )  u.  { <. B ,  D >. } ) )
30 setsval 14533 . . . . . . 7  |-  ( ( S  e.  V  /\  D  e.  X )  ->  ( S sSet  <. B ,  D >. )  =  ( ( S  |`  ( _V  \  { B }
) )  u.  { <. B ,  D >. } ) )
3130reseq1d 5262 . . . . . 6  |-  ( ( S  e.  V  /\  D  e.  X )  ->  ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  |`  ( _V  \  { A }
) ) )
3231ad2ant2rl 748 . . . . 5  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  |`  ( _V  \  { A }
) ) )
33 resundir 5278 . . . . . 6  |-  ( ( ( S  |`  ( _V  \  { B }
) )  u.  { <. B ,  D >. } )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  { B }
) )  |`  ( _V  \  { A }
) )  u.  ( { <. B ,  D >. }  |`  ( _V  \  { A } ) ) )
34 setscom.2 . . . . . . . . . 10  |-  B  e. 
_V
35 elex 3104 . . . . . . . . . . 11  |-  ( D  e.  X  ->  D  e.  _V )
3635ad2antll 728 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  D  e.  _V )
37 opelxpi 5021 . . . . . . . . . 10  |-  ( ( B  e.  _V  /\  D  e.  _V )  -> 
<. B ,  D >.  e.  ( _V  X.  _V ) )
3834, 36, 37sylancr 663 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  <. B ,  D >.  e.  ( _V  X.  _V ) )
39 opex 4701 . . . . . . . . . 10  |-  <. B ,  D >.  e.  _V
4039relsn 5096 . . . . . . . . 9  |-  ( Rel 
{ <. B ,  D >. }  <->  <. B ,  D >.  e.  ( _V  X.  _V ) )
4138, 40sylibr 212 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  Rel  { <. B ,  D >. } )
42 dmsnopss 5470 . . . . . . . . 9  |-  dom  { <. B ,  D >. } 
C_  { B }
43 ssv 3509 . . . . . . . . . . 11  |-  { A }  C_  _V
44 ssv 3509 . . . . . . . . . . 11  |-  { B }  C_  _V
45 ssconb 3622 . . . . . . . . . . 11  |-  ( ( { A }  C_  _V  /\  { B }  C_ 
_V )  ->  ( { A }  C_  ( _V  \  { B }
)  <->  { B }  C_  ( _V  \  { A } ) ) )
4643, 44, 45mp2an 672 . . . . . . . . . 10  |-  ( { A }  C_  ( _V  \  { B }
)  <->  { B }  C_  ( _V  \  { A } ) )
4722, 46sylib 196 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  { B }  C_  ( _V  \  { A }
) )
4842, 47syl5ss 3500 . . . . . . . 8  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  dom  { <. B ,  D >. }  C_  ( _V  \  { A } ) )
49 relssres 5301 . . . . . . . 8  |-  ( ( Rel  { <. B ,  D >. }  /\  dom  {
<. B ,  D >. } 
C_  ( _V  \  { A } ) )  ->  ( { <. B ,  D >. }  |`  ( _V  \  { A }
) )  =  { <. B ,  D >. } )
5041, 48, 49syl2anc 661 . . . . . . 7  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( { <. B ,  D >. }  |`  ( _V  \  { A }
) )  =  { <. B ,  D >. } )
5150uneq2d 3643 . . . . . 6  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u.  ( { <. B ,  D >. }  |`  ( _V  \  { A }
) ) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } ) )
5233, 51syl5eq 2496 . . . . 5  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  |`  ( _V  \  { A }
) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } ) )
5332, 52eqtrd 2484 . . . 4  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } ) )
5453uneq1d 3642 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  =  ( ( ( ( S  |`  ( _V  \  { B } ) )  |`  ( _V  \  { A } ) )  u. 
{ <. B ,  D >. } )  u.  { <. A ,  C >. } ) )
555, 29, 543eqtr4a 2510 . 2  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  u. 
{ <. B ,  D >. } )  =  ( ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } ) )
56 ovex 6309 . . 3  |-  ( S sSet  <. A ,  C >. )  e.  _V
57 simprr 757 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  D  e.  X )
58 setsval 14533 . . 3  |-  ( ( ( S sSet  <. A ,  C >. )  e.  _V  /\  D  e.  X )  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  u.  { <. B ,  D >. } ) )
5956, 57, 58sylancr 663 . 2  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( ( S sSet  <. A ,  C >. )  |`  ( _V  \  { B } ) )  u.  { <. B ,  D >. } ) )
60 ovex 6309 . . 3  |-  ( S sSet  <. B ,  D >. )  e.  _V
61 simprl 756 . . 3  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  ->  C  e.  W )
62 setsval 14533 . . 3  |-  ( ( ( S sSet  <. B ,  D >. )  e.  _V  /\  C  e.  W )  ->  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
6360, 61, 62sylancr 663 . 2  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. B ,  D >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
6455, 59, 633eqtr4d 2494 1  |-  ( ( ( S  e.  V  /\  A  =/=  B
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   _Vcvv 3095    \ cdif 3458    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   {csn 4014   <.cop 4020    X. cxp 4987   dom cdm 4989    |` cres 4991   Rel wrel 4994  (class class class)co 6281   sSet csts 14507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-res 5001  df-iota 5541  df-fun 5580  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-sets 14515
This theorem is referenced by:  rescabs  15079  mgpress  17026
  Copyright terms: Public domain W3C validator