MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsabs Structured version   Unicode version

Theorem setsabs 14750
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
setsabs  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. )
)

Proof of Theorem setsabs
StepHypRef Expression
1 setsres 14749 . . . 4  |-  ( S  e.  V  ->  (
( S sSet  <. A ,  B >. )  |`  ( _V  \  { A }
) )  =  ( S  |`  ( _V  \  { A } ) ) )
21adantr 463 . . 3  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
32uneq1d 3643 . 2  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
4 ovex 6298 . . . 4  |-  ( S sSet  <. A ,  B >. )  e.  _V
54a1i 11 . . 3  |-  ( S  e.  V  ->  ( S sSet  <. A ,  B >. )  e.  _V )
6 setsval 14744 . . 3  |-  ( ( ( S sSet  <. A ,  B >. )  e.  _V  /\  C  e.  W )  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
75, 6sylan 469 . 2  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
8 setsval 14744 . 2  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
93, 7, 83eqtr4d 2505 1  |-  ( ( S  e.  V  /\  C  e.  W )  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106    \ cdif 3458    u. cun 3459   {csn 4016   <.cop 4022    |` cres 4990  (class class class)co 6270   sSet csts 14717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-res 5000  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-sets 14725
This theorem is referenced by:  ressress  14784  rescabs  15324
  Copyright terms: Public domain W3C validator