Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setlikespec Structured version   Unicode version

Theorem setlikespec 29235
Description: If  R is set-like in  A, then all predecessors classes of elements of  A exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
setlikespec  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  e.  _V )

Proof of Theorem setlikespec
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3096 . . . . . 6  |-  x  e. 
_V
21elpred 29225 . . . . 5  |-  ( X  e.  A  ->  (
x  e.  Pred ( R ,  A ,  X )  <->  ( x  e.  A  /\  x R X ) ) )
32adantr 465 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
x  e.  Pred ( R ,  A ,  X )  <->  ( x  e.  A  /\  x R X ) ) )
43abbi2dv 2578 . . 3  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  =  {
x  |  ( x  e.  A  /\  x R X ) } )
5 df-rab 2800 . . 3  |-  { x  e.  A  |  x R X }  =  {
x  |  ( x  e.  A  /\  x R X ) }
64, 5syl6reqr 2501 . 2  |-  ( ( X  e.  A  /\  R Se  A )  ->  { x  e.  A  |  x R X }  =  Pred ( R ,  A ,  X ) )
7 seex 4828 . . 3  |-  ( ( R Se  A  /\  X  e.  A )  ->  { x  e.  A  |  x R X }  e.  _V )
87ancoms 453 . 2  |-  ( ( X  e.  A  /\  R Se  A )  ->  { x  e.  A  |  x R X }  e.  _V )
96, 8eqeltrrd 2530 1  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1802   {cab 2426   {crab 2795   _Vcvv 3093   class class class wbr 4433   Se wse 4822   Predcpred 29211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pr 4672
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-br 4434  df-opab 4492  df-se 4825  df-xp 4991  df-cnv 4993  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-pred 29212
This theorem is referenced by:  trpredtr  29281  trpredmintr  29282  trpredelss  29283  dftrpred3g  29284  trpredpo  29286  trpredrec  29289  frmin  29290  wfrlem15  29325
  Copyright terms: Public domain W3C validator