Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds Structured version   Unicode version

Theorem setinds 27590
Description: Principle of  _E induction (set induction). If a property passes from all elements of  x to  x itself, then it holds for all  x. (Contributed by Scott Fenton, 10-Mar-2011.)
Hypothesis
Ref Expression
setinds.1  |-  ( A. y  e.  x  [. y  /  x ]. ph  ->  ph )
Assertion
Ref Expression
setinds  |-  ph
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem setinds
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2974 . 2  |-  x  e. 
_V
2 setind 7953 . . . . 5  |-  ( A. z ( z  C_  { x  |  ph }  ->  z  e.  { x  |  ph } )  ->  { x  |  ph }  =  _V )
3 dfss3 3345 . . . . . . 7  |-  ( z 
C_  { x  | 
ph }  <->  A. y  e.  z  y  e.  { x  |  ph }
)
4 df-sbc 3186 . . . . . . . . 9  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
54ralbii 2738 . . . . . . . 8  |-  ( A. y  e.  z  [. y  /  x ]. ph  <->  A. y  e.  z  y  e.  { x  |  ph }
)
6 nfcv 2578 . . . . . . . . . . 11  |-  F/_ x
z
7 nfsbc1v 3205 . . . . . . . . . . 11  |-  F/ x [. y  /  x ]. ph
86, 7nfral 2768 . . . . . . . . . 10  |-  F/ x A. y  e.  z  [. y  /  x ]. ph
9 nfsbc1v 3205 . . . . . . . . . 10  |-  F/ x [. z  /  x ]. ph
108, 9nfim 1853 . . . . . . . . 9  |-  F/ x
( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
11 raleq 2916 . . . . . . . . . 10  |-  ( x  =  z  ->  ( A. y  e.  x  [. y  /  x ]. ph  <->  A. y  e.  z  [. y  /  x ]. ph )
)
12 sbceq1a 3196 . . . . . . . . . 10  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1311, 12imbi12d 320 . . . . . . . . 9  |-  ( x  =  z  ->  (
( A. y  e.  x  [. y  /  x ]. ph  ->  ph )  <->  ( A. y  e.  z 
[. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
14 setinds.1 . . . . . . . . 9  |-  ( A. y  e.  x  [. y  /  x ]. ph  ->  ph )
1510, 13, 14chvar 1957 . . . . . . . 8  |-  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
165, 15sylbir 213 . . . . . . 7  |-  ( A. y  e.  z  y  e.  { x  |  ph }  ->  [. z  /  x ]. ph )
173, 16sylbi 195 . . . . . 6  |-  ( z 
C_  { x  | 
ph }  ->  [. z  /  x ]. ph )
18 df-sbc 3186 . . . . . 6  |-  ( [. z  /  x ]. ph  <->  z  e.  { x  |  ph }
)
1917, 18sylib 196 . . . . 5  |-  ( z 
C_  { x  | 
ph }  ->  z  e.  { x  |  ph } )
202, 19mpg 1593 . . . 4  |-  { x  |  ph }  =  _V
2120eqcomi 2446 . . 3  |-  _V  =  { x  |  ph }
2221abeq2i 2549 . 2  |-  ( x  e.  _V  <->  ph )
231, 22mpbi 208 1  |-  ph
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   {cab 2428   A.wral 2714   _Vcvv 2971   [.wsbc 3185    C_ wss 3327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-reg 7806  ax-inf2 7846
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-om 6476  df-recs 6831  df-rdg 6865
This theorem is referenced by:  setinds2f  27591
  Copyright terms: Public domain W3C validator