MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setind Structured version   Unicode version

Theorem setind 8168
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Distinct variable group:    x, A

Proof of Theorem setind
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssindif0 3866 . . . . . . 7  |-  ( y 
C_  A  <->  ( y  i^i  ( _V  \  A
) )  =  (/) )
2 sseq1 3510 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
3 eleq1 2515 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
42, 3imbi12d 320 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  C_  A  ->  x  e.  A )  <-> 
( y  C_  A  ->  y  e.  A ) ) )
54spv 1997 . . . . . . 7  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( y  C_  A  ->  y  e.  A ) )
61, 5syl5bir 218 . . . . . 6  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( (
y  i^i  ( _V  \  A ) )  =  (/)  ->  y  e.  A
) )
7 eldifn 3612 . . . . . 6  |-  ( y  e.  ( _V  \  A )  ->  -.  y  e.  A )
86, 7nsyli 141 . . . . 5  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( y  e.  ( _V  \  A
)  ->  -.  (
y  i^i  ( _V  \  A ) )  =  (/) ) )
98imp 429 . . . 4  |-  ( ( A. x ( x 
C_  A  ->  x  e.  A )  /\  y  e.  ( _V  \  A
) )  ->  -.  ( y  i^i  ( _V  \  A ) )  =  (/) )
109nrexdv 2899 . . 3  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  -.  E. y  e.  ( _V  \  A
) ( y  i^i  ( _V  \  A
) )  =  (/) )
11 zfregs 8166 . . . 4  |-  ( ( _V  \  A )  =/=  (/)  ->  E. y  e.  ( _V  \  A
) ( y  i^i  ( _V  \  A
) )  =  (/) )
1211necon1bi 2676 . . 3  |-  ( -. 
E. y  e.  ( _V  \  A ) ( y  i^i  ( _V  \  A ) )  =  (/)  ->  ( _V 
\  A )  =  (/) )
1310, 12syl 16 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( _V  \  A )  =  (/) )
14 vdif0 3872 . 2  |-  ( A  =  _V  <->  ( _V  \  A )  =  (/) )
1513, 14sylibr 212 1  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1381    = wceq 1383    e. wcel 1804   E.wrex 2794   _Vcvv 3095    \ cdif 3458    i^i cin 3460    C_ wss 3461   (/)c0 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-reg 8021  ax-inf2 8061
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-om 6686  df-recs 7044  df-rdg 7078
This theorem is referenced by:  setind2  8169  tz9.13  8212  unir1  8234  setinds  29186
  Copyright terms: Public domain W3C validator