MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcval Structured version   Unicode version

Theorem setcval 15971
Description: Value of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcval.c  |-  C  =  ( SetCat `  U )
setcval.u  |-  ( ph  ->  U  e.  V )
setcval.h  |-  ( ph  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
setcval.o  |-  ( ph  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v
)  ^m  ( 1st `  v ) )  |->  ( g  o.  f ) ) ) )
Assertion
Ref Expression
setcval  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Distinct variable groups:    f, g,
v, x, y, z    ph, v, x, y, z   
v, U, x, y, z
Allowed substitution hints:    ph( f, g)    C( x, y, z, v, f, g)    .x. ( x, y, z, v, f, g)    U( f, g)    H( x, y, z, v, f, g)    V( x, y, z, v, f, g)

Proof of Theorem setcval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 setcval.c . 2  |-  C  =  ( SetCat `  U )
2 df-setc 15970 . . . 4  |-  SetCat  =  ( u  e.  _V  |->  {
<. ( Base `  ndx ) ,  u >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u
) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v
)  ^m  ( 1st `  v ) )  |->  ( g  o.  f ) ) ) >. } )
32a1i 11 . . 3  |-  ( ph  -> 
SetCat  =  ( u  e. 
_V  |->  { <. ( Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >. } ) )
4 simpr 462 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  u  =  U )
54opeq2d 4194 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. ( Base `  ndx ) ,  u >.  =  <. (
Base `  ndx ) ,  U >. )
6 eqidd 2423 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
y  ^m  x )  =  ( y  ^m  x ) )
74, 4, 6mpt2eq123dv 6367 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  (
x  e.  u ,  y  e.  u  |->  ( y  ^m  x ) )  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
8 setcval.h . . . . . . 7  |-  ( ph  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
98adantr 466 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
107, 9eqtr4d 2466 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
x  e.  u ,  y  e.  u  |->  ( y  ^m  x ) )  =  H )
1110opeq2d 4194 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x
) ) >.  =  <. ( Hom  `  ndx ) ,  H >. )
124sqxpeqd 4879 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
u  X.  u )  =  ( U  X.  U ) )
13 eqidd 2423 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) )  =  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) )
1412, 4, 13mpt2eq123dv 6367 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  (
v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) )  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v
) )  |->  ( g  o.  f ) ) ) )
15 setcval.o . . . . . . 7  |-  ( ph  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v
)  ^m  ( 1st `  v ) )  |->  ( g  o.  f ) ) ) )
1615adantr 466 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v
) )  |->  ( g  o.  f ) ) ) )
1714, 16eqtr4d 2466 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) )  = 
.x.  )
1817opeq2d 4194 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. (comp ` 
ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >.  =  <. (comp `  ndx ) ,  .x.  >. )
195, 11, 18tpeq123d 4094 . . 3  |-  ( (
ph  /\  u  =  U )  ->  { <. (
Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >. }  =  { <. ( Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
20 setcval.u . . . 4  |-  ( ph  ->  U  e.  V )
21 elex 3089 . . . 4  |-  ( U  e.  V  ->  U  e.  _V )
2220, 21syl 17 . . 3  |-  ( ph  ->  U  e.  _V )
23 tpex 6604 . . . 4  |-  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  e.  _V
2423a1i 11 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  U >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. }  e.  _V )
253, 19, 22, 24fvmptd 5970 . 2  |-  ( ph  ->  ( SetCat `  U )  =  { <. ( Base `  ndx ) ,  U >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
261, 25syl5eq 2475 1  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   _Vcvv 3080   {ctp 4002   <.cop 4004    |-> cmpt 4482    X. cxp 4851    o. ccom 4857   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   1stc1st 6805   2ndc2nd 6806    ^m cmap 7483   ndxcnx 15117   Basecbs 15120   Hom chom 15200  compcco 15201   SetCatcsetc 15969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-iota 5565  df-fun 5603  df-fv 5609  df-oprab 6309  df-mpt2 6310  df-setc 15970
This theorem is referenced by:  setcbas  15972  setchomfval  15973  setccofval  15976
  Copyright terms: Public domain W3C validator