MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcval Structured version   Unicode version

Theorem setcval 15279
Description: Value of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcval.c  |-  C  =  ( SetCat `  U )
setcval.u  |-  ( ph  ->  U  e.  V )
setcval.h  |-  ( ph  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
setcval.o  |-  ( ph  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v
)  ^m  ( 1st `  v ) )  |->  ( g  o.  f ) ) ) )
Assertion
Ref Expression
setcval  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Distinct variable groups:    f, g,
v, x, y, z    ph, v, x, y, z   
v, U, x, y, z
Allowed substitution hints:    ph( f, g)    C( x, y, z, v, f, g)    .x. ( x, y, z, v, f, g)    U( f, g)    H( x, y, z, v, f, g)    V( x, y, z, v, f, g)

Proof of Theorem setcval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 setcval.c . 2  |-  C  =  ( SetCat `  U )
2 df-setc 15278 . . . 4  |-  SetCat  =  ( u  e.  _V  |->  {
<. ( Base `  ndx ) ,  u >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u
) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v
)  ^m  ( 1st `  v ) )  |->  ( g  o.  f ) ) ) >. } )
32a1i 11 . . 3  |-  ( ph  -> 
SetCat  =  ( u  e. 
_V  |->  { <. ( Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >. } ) )
4 simpr 461 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  u  =  U )
54opeq2d 4226 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. ( Base `  ndx ) ,  u >.  =  <. (
Base `  ndx ) ,  U >. )
6 eqidd 2468 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
y  ^m  x )  =  ( y  ^m  x ) )
74, 4, 6mpt2eq123dv 6354 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  (
x  e.  u ,  y  e.  u  |->  ( y  ^m  x ) )  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
8 setcval.h . . . . . . 7  |-  ( ph  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
98adantr 465 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
107, 9eqtr4d 2511 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
x  e.  u ,  y  e.  u  |->  ( y  ^m  x ) )  =  H )
1110opeq2d 4226 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x
) ) >.  =  <. ( Hom  `  ndx ) ,  H >. )
124, 4xpeq12d 5030 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
u  X.  u )  =  ( U  X.  U ) )
13 eqidd 2468 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) )  =  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) )
1412, 4, 13mpt2eq123dv 6354 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  (
v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) )  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v
) )  |->  ( g  o.  f ) ) ) )
15 setcval.o . . . . . . 7  |-  ( ph  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v
)  ^m  ( 1st `  v ) )  |->  ( g  o.  f ) ) ) )
1615adantr 465 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v
) )  |->  ( g  o.  f ) ) ) )
1714, 16eqtr4d 2511 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) )  = 
.x.  )
1817opeq2d 4226 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. (comp ` 
ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >.  =  <. (comp `  ndx ) ,  .x.  >. )
195, 11, 18tpeq123d 4127 . . 3  |-  ( (
ph  /\  u  =  U )  ->  { <. (
Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >. }  =  { <. ( Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
20 setcval.u . . . 4  |-  ( ph  ->  U  e.  V )
21 elex 3127 . . . 4  |-  ( U  e.  V  ->  U  e.  _V )
2220, 21syl 16 . . 3  |-  ( ph  ->  U  e.  _V )
23 tpex 6594 . . . 4  |-  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  e.  _V
2423a1i 11 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  U >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. }  e.  _V )
253, 19, 22, 24fvmptd 5962 . 2  |-  ( ph  ->  ( SetCat `  U )  =  { <. ( Base `  ndx ) ,  U >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
261, 25syl5eq 2520 1  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   {ctp 4037   <.cop 4039    |-> cmpt 4511    X. cxp 5003    o. ccom 5009   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   1stc1st 6793   2ndc2nd 6794    ^m cmap 7432   ndxcnx 14504   Basecbs 14507   Hom chom 14583  compcco 14584   SetCatcsetc 15277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-iota 5557  df-fun 5596  df-fv 5602  df-oprab 6299  df-mpt2 6300  df-setc 15278
This theorem is referenced by:  setcbas  15280  setchomfval  15281  setccofval  15284
  Copyright terms: Public domain W3C validator