MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcsect Structured version   Unicode version

Theorem setcsect 15495
Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c  |-  C  =  ( SetCat `  U )
setcmon.u  |-  ( ph  ->  U  e.  V )
setcmon.x  |-  ( ph  ->  X  e.  U )
setcmon.y  |-  ( ph  ->  Y  e.  U )
setcsect.n  |-  S  =  (Sect `  C )
Assertion
Ref Expression
setcsect  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F : X --> Y  /\  G : Y --> X  /\  ( G  o.  F )  =  (  _I  |`  X )
) ) )

Proof of Theorem setcsect
StepHypRef Expression
1 eqid 2457 . . 3  |-  ( Base `  C )  =  (
Base `  C )
2 eqid 2457 . . 3  |-  ( Hom  `  C )  =  ( Hom  `  C )
3 eqid 2457 . . 3  |-  (comp `  C )  =  (comp `  C )
4 eqid 2457 . . 3  |-  ( Id
`  C )  =  ( Id `  C
)
5 setcsect.n . . 3  |-  S  =  (Sect `  C )
6 setcmon.u . . . 4  |-  ( ph  ->  U  e.  V )
7 setcmon.c . . . . 5  |-  C  =  ( SetCat `  U )
87setccat 15491 . . . 4  |-  ( U  e.  V  ->  C  e.  Cat )
96, 8syl 16 . . 3  |-  ( ph  ->  C  e.  Cat )
10 setcmon.x . . . 4  |-  ( ph  ->  X  e.  U )
117, 6setcbas 15484 . . . 4  |-  ( ph  ->  U  =  ( Base `  C ) )
1210, 11eleqtrd 2547 . . 3  |-  ( ph  ->  X  e.  ( Base `  C ) )
13 setcmon.y . . . 4  |-  ( ph  ->  Y  e.  U )
1413, 11eleqtrd 2547 . . 3  |-  ( ph  ->  Y  e.  ( Base `  C ) )
151, 2, 3, 4, 5, 9, 12, 14issect 15169 . 2  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X ( Hom  `  C
) Y )  /\  G  e.  ( Y
( Hom  `  C ) X )  /\  ( G ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) ) ) )
167, 6, 2, 10, 13elsetchom 15487 . . . . . 6  |-  ( ph  ->  ( F  e.  ( X ( Hom  `  C
) Y )  <->  F : X
--> Y ) )
177, 6, 2, 13, 10elsetchom 15487 . . . . . 6  |-  ( ph  ->  ( G  e.  ( Y ( Hom  `  C
) X )  <->  G : Y
--> X ) )
1816, 17anbi12d 710 . . . . 5  |-  ( ph  ->  ( ( F  e.  ( X ( Hom  `  C ) Y )  /\  G  e.  ( Y ( Hom  `  C
) X ) )  <-> 
( F : X --> Y  /\  G : Y --> X ) ) )
1918anbi1d 704 . . . 4  |-  ( ph  ->  ( ( ( F  e.  ( X ( Hom  `  C ) Y )  /\  G  e.  ( Y ( Hom  `  C ) X ) )  /\  ( G ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
) ) )
206adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( F : X --> Y  /\  G : Y --> X ) )  ->  U  e.  V
)
2110adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( F : X --> Y  /\  G : Y --> X ) )  ->  X  e.  U
)
2213adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( F : X --> Y  /\  G : Y --> X ) )  ->  Y  e.  U
)
23 simprl 756 . . . . . . 7  |-  ( (
ph  /\  ( F : X --> Y  /\  G : Y --> X ) )  ->  F : X --> Y )
24 simprr 757 . . . . . . 7  |-  ( (
ph  /\  ( F : X --> Y  /\  G : Y --> X ) )  ->  G : Y --> X )
257, 20, 3, 21, 22, 21, 23, 24setcco 15489 . . . . . 6  |-  ( (
ph  /\  ( F : X --> Y  /\  G : Y --> X ) )  ->  ( G (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( G  o.  F ) )
267, 4, 6, 10setcid 15492 . . . . . . 7  |-  ( ph  ->  ( ( Id `  C ) `  X
)  =  (  _I  |`  X ) )
2726adantr 465 . . . . . 6  |-  ( (
ph  /\  ( F : X --> Y  /\  G : Y --> X ) )  ->  ( ( Id
`  C ) `  X )  =  (  _I  |`  X )
)
2825, 27eqeq12d 2479 . . . . 5  |-  ( (
ph  /\  ( F : X --> Y  /\  G : Y --> X ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X )  <->  ( G  o.  F )  =  (  _I  |`  X )
) )
2928pm5.32da 641 . . . 4  |-  ( ph  ->  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
) ) )
3019, 29bitrd 253 . . 3  |-  ( ph  ->  ( ( ( F  e.  ( X ( Hom  `  C ) Y )  /\  G  e.  ( Y ( Hom  `  C ) X ) )  /\  ( G ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
) ) )
31 df-3an 975 . . 3  |-  ( ( F  e.  ( X ( Hom  `  C
) Y )  /\  G  e.  ( Y
( Hom  `  C ) X )  /\  ( G ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) )  <-> 
( ( F  e.  ( X ( Hom  `  C ) Y )  /\  G  e.  ( Y ( Hom  `  C
) X ) )  /\  ( G (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
) )
32 df-3an 975 . . 3  |-  ( ( F : X --> Y  /\  G : Y --> X  /\  ( G  o.  F
)  =  (  _I  |`  X ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
) )
3330, 31, 323bitr4g 288 . 2  |-  ( ph  ->  ( ( F  e.  ( X ( Hom  `  C ) Y )  /\  G  e.  ( Y ( Hom  `  C
) X )  /\  ( G ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) )  <-> 
( F : X --> Y  /\  G : Y --> X  /\  ( G  o.  F )  =  (  _I  |`  X )
) ) )
3415, 33bitrd 253 1  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F : X --> Y  /\  G : Y --> X  /\  ( G  o.  F )  =  (  _I  |`  X )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   <.cop 4038   class class class wbr 4456    _I cid 4799    |` cres 5010    o. ccom 5012   -->wf 5590   ` cfv 5594  (class class class)co 6296   Basecbs 14644   Hom chom 14723  compcco 14724   Catccat 15081   Idccid 15082  Sectcsect 15160   SetCatcsetc 15481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-hom 14736  df-cco 14737  df-cat 15085  df-cid 15086  df-sect 15163  df-setc 15482
This theorem is referenced by:  setcinv  15496
  Copyright terms: Public domain W3C validator