MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setchomfval Structured version   Unicode version

Theorem setchomfval 15070
Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcbas.c  |-  C  =  ( SetCat `  U )
setcbas.u  |-  ( ph  ->  U  e.  V )
setchomfval.h  |-  H  =  ( Hom  `  C
)
Assertion
Ref Expression
setchomfval  |-  ( ph  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
Distinct variable groups:    x, y, ph    x, U, y
Allowed substitution hints:    C( x, y)    H( x, y)    V( x, y)

Proof of Theorem setchomfval
Dummy variables  f 
g  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setcbas.c . . 3  |-  C  =  ( SetCat `  U )
2 setcbas.u . . 3  |-  ( ph  ->  U  e.  V )
3 eqidd 2455 . . 3  |-  ( ph  ->  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x
) )  =  ( x  e.  U , 
y  e.  U  |->  ( y  ^m  x ) ) )
4 eqidd 2455 . . 3  |-  ( ph  ->  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v
) )  |->  ( g  o.  f ) ) )  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v
)  ^m  ( 1st `  v ) )  |->  ( g  o.  f ) ) ) )
51, 2, 3, 4setcval 15068 . 2  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >. } )
6 catstr 14990 . 2  |-  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >. } Struct  <. 1 , ; 1 5 >.
7 homid 14477 . 2  |-  Hom  = Slot  ( Hom  `  ndx )
8 snsstp2 4136 . 2  |-  { <. ( Hom  `  ndx ) ,  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x
) ) >. }  C_  {
<. ( Base `  ndx ) ,  U >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( U  X.  U
) ,  z  e.  U  |->  ( g  e.  ( z  ^m  ( 2nd `  v ) ) ,  f  e.  ( ( 2nd `  v
)  ^m  ( 1st `  v ) )  |->  ( g  o.  f ) ) ) >. }
9 mpt2exga 6762 . . 3  |-  ( ( U  e.  V  /\  U  e.  V )  ->  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x
) )  e.  _V )
102, 2, 9syl2anc 661 . 2  |-  ( ph  ->  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x
) )  e.  _V )
11 setchomfval.h . 2  |-  H  =  ( Hom  `  C
)
125, 6, 7, 8, 10, 11strfv3 14331 1  |-  ( ph  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( y  ^m  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   _Vcvv 3078   {ctp 3992   <.cop 3994    X. cxp 4949    o. ccom 4955   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   1stc1st 6688   2ndc2nd 6689    ^m cmap 7327   1c1 9398   5c5 10489  ;cdc 10870   ndxcnx 14293   Basecbs 14296   Hom chom 14372  compcco 14373   SetCatcsetc 15066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-7 10500  df-8 10501  df-9 10502  df-10 10503  df-n0 10695  df-z 10762  df-dec 10871  df-uz 10977  df-fz 11559  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-hom 14385  df-cco 14386  df-setc 15067
This theorem is referenced by:  setchom  15071  setccofval  15073
  Copyright terms: Public domain W3C validator