MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setccatid Structured version   Unicode version

Theorem setccatid 14948
Description: Lemma for setccat 14949. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
setccat.c  |-  C  =  ( SetCat `  U )
Assertion
Ref Expression
setccatid  |-  ( U  e.  V  ->  ( C  e.  Cat  /\  ( Id `  C )  =  ( x  e.  U  |->  (  _I  |`  x
) ) ) )
Distinct variable groups:    x, C    x, U    x, V

Proof of Theorem setccatid
Dummy variables  f 
g  h  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setccat.c . . 3  |-  C  =  ( SetCat `  U )
2 id 22 . . 3  |-  ( U  e.  V  ->  U  e.  V )
31, 2setcbas 14942 . 2  |-  ( U  e.  V  ->  U  =  ( Base `  C
) )
4 eqidd 2442 . 2  |-  ( U  e.  V  ->  ( Hom  `  C )  =  ( Hom  `  C
) )
5 eqidd 2442 . 2  |-  ( U  e.  V  ->  (comp `  C )  =  (comp `  C ) )
6 fvex 5698 . . . 4  |-  ( SetCat `  U )  e.  _V
71, 6eqeltri 2511 . . 3  |-  C  e. 
_V
87a1i 11 . 2  |-  ( U  e.  V  ->  C  e.  _V )
9 biid 236 . 2  |-  ( ( ( w  e.  U  /\  x  e.  U
)  /\  ( y  e.  U  /\  z  e.  U )  /\  (
f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) )  <->  ( (
w  e.  U  /\  x  e.  U )  /\  ( y  e.  U  /\  z  e.  U
)  /\  ( f  e.  ( w ( Hom  `  C ) x )  /\  g  e.  ( x ( Hom  `  C
) y )  /\  h  e.  ( y
( Hom  `  C ) z ) ) ) )
10 f1oi 5673 . . . 4  |-  (  _I  |`  x ) : x -1-1-onto-> x
11 f1of 5638 . . . 4  |-  ( (  _I  |`  x ) : x -1-1-onto-> x  ->  (  _I  |`  x ) : x --> x )
1210, 11mp1i 12 . . 3  |-  ( ( U  e.  V  /\  x  e.  U )  ->  (  _I  |`  x
) : x --> x )
13 simpl 454 . . . 4  |-  ( ( U  e.  V  /\  x  e.  U )  ->  U  e.  V )
14 eqid 2441 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
15 simpr 458 . . . 4  |-  ( ( U  e.  V  /\  x  e.  U )  ->  x  e.  U )
161, 13, 14, 15, 15elsetchom 14945 . . 3  |-  ( ( U  e.  V  /\  x  e.  U )  ->  ( (  _I  |`  x
)  e.  ( x ( Hom  `  C
) x )  <->  (  _I  |`  x ) : x --> x ) )
1712, 16mpbird 232 . 2  |-  ( ( U  e.  V  /\  x  e.  U )  ->  (  _I  |`  x
)  e.  ( x ( Hom  `  C
) x ) )
18 simpl 454 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  ->  U  e.  V )
19 eqid 2441 . . . 4  |-  (comp `  C )  =  (comp `  C )
20 simpr1l 1040 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  ->  w  e.  U )
21 simpr1r 1041 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  ->  x  e.  U )
22 simpr31 1073 . . . . 5  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
f  e.  ( w ( Hom  `  C
) x ) )
231, 18, 14, 20, 21elsetchom 14945 . . . . 5  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( f  e.  ( w ( Hom  `  C
) x )  <->  f :
w --> x ) )
2422, 23mpbid 210 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
f : w --> x )
2510, 11mp1i 12 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
(  _I  |`  x
) : x --> x )
261, 18, 19, 20, 21, 21, 24, 25setcco 14947 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( (  _I  |`  x
) ( <. w ,  x >. (comp `  C
) x ) f )  =  ( (  _I  |`  x )  o.  f ) )
27 fcoi2 5583 . . . 4  |-  ( f : w --> x  -> 
( (  _I  |`  x
)  o.  f )  =  f )
2824, 27syl 16 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( (  _I  |`  x
)  o.  f )  =  f )
2926, 28eqtrd 2473 . 2  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( (  _I  |`  x
) ( <. w ,  x >. (comp `  C
) x ) f )  =  f )
30 simpr2l 1042 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
y  e.  U )
31 simpr32 1074 . . . . 5  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
g  e.  ( x ( Hom  `  C
) y ) )
321, 18, 14, 21, 30elsetchom 14945 . . . . 5  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( g  e.  ( x ( Hom  `  C
) y )  <->  g :
x --> y ) )
3331, 32mpbid 210 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
g : x --> y )
341, 18, 19, 21, 21, 30, 25, 33setcco 14947 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( g ( <.
x ,  x >. (comp `  C ) y ) (  _I  |`  x
) )  =  ( g  o.  (  _I  |`  x ) ) )
35 fcoi1 5582 . . . 4  |-  ( g : x --> y  -> 
( g  o.  (  _I  |`  x ) )  =  g )
3633, 35syl 16 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( g  o.  (  _I  |`  x ) )  =  g )
3734, 36eqtrd 2473 . 2  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( g ( <.
x ,  x >. (comp `  C ) y ) (  _I  |`  x
) )  =  g )
381, 18, 19, 20, 21, 30, 24, 33setcco 14947 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( g ( <.
w ,  x >. (comp `  C ) y ) f )  =  ( g  o.  f ) )
39 fco 5565 . . . . 5  |-  ( ( g : x --> y  /\  f : w --> x )  ->  ( g  o.  f ) : w --> y )
4033, 24, 39syl2anc 656 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( g  o.  f
) : w --> y )
411, 18, 14, 20, 30elsetchom 14945 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( ( g  o.  f )  e.  ( w ( Hom  `  C
) y )  <->  ( g  o.  f ) : w --> y ) )
4240, 41mpbird 232 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( g  o.  f
)  e.  ( w ( Hom  `  C
) y ) )
4338, 42eqeltrd 2515 . 2  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( g ( <.
w ,  x >. (comp `  C ) y ) f )  e.  ( w ( Hom  `  C
) y ) )
44 coass 5353 . . . 4  |-  ( ( h  o.  g )  o.  f )  =  ( h  o.  (
g  o.  f ) )
45 simpr2r 1043 . . . . 5  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
z  e.  U )
46 simpr33 1075 . . . . . . 7  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  ->  h  e.  ( y
( Hom  `  C ) z ) )
471, 18, 14, 30, 45elsetchom 14945 . . . . . . 7  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( h  e.  ( y ( Hom  `  C
) z )  <->  h :
y --> z ) )
4846, 47mpbid 210 . . . . . 6  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  ->  h : y --> z )
49 fco 5565 . . . . . 6  |-  ( ( h : y --> z  /\  g : x --> y )  ->  (
h  o.  g ) : x --> z )
5048, 33, 49syl2anc 656 . . . . 5  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( h  o.  g
) : x --> z )
511, 18, 19, 20, 21, 45, 24, 50setcco 14947 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( ( h  o.  g ) ( <.
w ,  x >. (comp `  C ) z ) f )  =  ( ( h  o.  g
)  o.  f ) )
521, 18, 19, 20, 30, 45, 40, 48setcco 14947 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( h ( <.
w ,  y >.
(comp `  C )
z ) ( g  o.  f ) )  =  ( h  o.  ( g  o.  f
) ) )
5344, 51, 523eqtr4a 2499 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( ( h  o.  g ) ( <.
w ,  x >. (comp `  C ) z ) f )  =  ( h ( <. w ,  y >. (comp `  C ) z ) ( g  o.  f
) ) )
541, 18, 19, 21, 30, 45, 33, 48setcco 14947 . . . 4  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( h ( <.
x ,  y >.
(comp `  C )
z ) g )  =  ( h  o.  g ) )
5554oveq1d 6105 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( ( h (
<. x ,  y >.
(comp `  C )
z ) g ) ( <. w ,  x >. (comp `  C )
z ) f )  =  ( ( h  o.  g ) (
<. w ,  x >. (comp `  C ) z ) f ) )
5638oveq2d 6106 . . 3  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( h ( <.
w ,  y >.
(comp `  C )
z ) ( g ( <. w ,  x >. (comp `  C )
y ) f ) )  =  ( h ( <. w ,  y
>. (comp `  C )
z ) ( g  o.  f ) ) )
5753, 55, 563eqtr4d 2483 . 2  |-  ( ( U  e.  V  /\  ( ( w  e.  U  /\  x  e.  U )  /\  (
y  e.  U  /\  z  e.  U )  /\  ( f  e.  ( w ( Hom  `  C
) x )  /\  g  e.  ( x
( Hom  `  C ) y )  /\  h  e.  ( y ( Hom  `  C ) z ) ) ) )  -> 
( ( h (
<. x ,  y >.
(comp `  C )
z ) g ) ( <. w ,  x >. (comp `  C )
z ) f )  =  ( h (
<. w ,  y >.
(comp `  C )
z ) ( g ( <. w ,  x >. (comp `  C )
y ) f ) ) )
583, 4, 5, 8, 9, 17, 29, 37, 43, 57iscatd2 14615 1  |-  ( U  e.  V  ->  ( C  e.  Cat  /\  ( Id `  C )  =  ( x  e.  U  |->  (  _I  |`  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970   <.cop 3880    e. cmpt 4347    _I cid 4627    |` cres 4838    o. ccom 4840   -->wf 5411   -1-1-onto->wf1o 5414   ` cfv 5415  (class class class)co 6090   Hom chom 14245  compcco 14246   Catccat 14598   Idccid 14599   SetCatcsetc 14939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-hom 14258  df-cco 14259  df-cat 14602  df-cid 14603  df-setc 14940
This theorem is referenced by:  setccat  14949  setcid  14950
  Copyright terms: Public domain W3C validator