MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sess2 Structured version   Visualization version   Unicode version

Theorem sess2 4808
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess2  |-  ( A 
C_  B  ->  ( R Se  B  ->  R Se  A
) )

Proof of Theorem sess2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3479 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  B  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  B  | 
y R x }  e.  _V ) )
2 rabss2 3498 . . . . 5  |-  ( A 
C_  B  ->  { y  e.  A  |  y R x }  C_  { y  e.  B  | 
y R x }
)
3 ssexg 4542 . . . . . 6  |-  ( ( { y  e.  A  |  y R x }  C_  { y  e.  B  |  y R x }  /\  { y  e.  B  | 
y R x }  e.  _V )  ->  { y  e.  A  |  y R x }  e.  _V )
43ex 441 . . . . 5  |-  ( { y  e.  A  | 
y R x }  C_ 
{ y  e.  B  |  y R x }  ->  ( {
y  e.  B  | 
y R x }  e.  _V  ->  { y  e.  A  |  y R x }  e.  _V ) )
52, 4syl 17 . . . 4  |-  ( A 
C_  B  ->  ( { y  e.  B  |  y R x }  e.  _V  ->  { y  e.  A  | 
y R x }  e.  _V ) )
65ralimdv 2806 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  A  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V ) )
71, 6syld 44 . 2  |-  ( A 
C_  B  ->  ( A. x  e.  B  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V ) )
8 df-se 4799 . 2  |-  ( R Se  B  <->  A. x  e.  B  { y  e.  B  |  y R x }  e.  _V )
9 df-se 4799 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
107, 8, 93imtr4g 278 1  |-  ( A 
C_  B  ->  ( R Se  B  ->  R Se  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1904   A.wral 2756   {crab 2760   _Vcvv 3031    C_ wss 3390   class class class wbr 4395   Se wse 4796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rab 2765  df-v 3033  df-in 3397  df-ss 3404  df-se 4799
This theorem is referenced by:  seeq2  4812  wereu2  4836  wfrlem5  7058  frmin  30551  frrlem5  30589
  Copyright terms: Public domain W3C validator