MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sess1 Structured version   Visualization version   Unicode version

Theorem sess1 4820
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess1  |-  ( R 
C_  S  ->  ( S Se  A  ->  R Se  A
) )

Proof of Theorem sess1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 463 . . . . . 6  |-  ( ( R  C_  S  /\  y  e.  A )  ->  R  C_  S )
21ssbrd 4457 . . . . 5  |-  ( ( R  C_  S  /\  y  e.  A )  ->  ( y R x  ->  y S x ) )
32ss2rabdv 3521 . . . 4  |-  ( R 
C_  S  ->  { y  e.  A  |  y R x }  C_  { y  e.  A  | 
y S x }
)
4 ssexg 4562 . . . . 5  |-  ( ( { y  e.  A  |  y R x }  C_  { y  e.  A  |  y S x }  /\  { y  e.  A  | 
y S x }  e.  _V )  ->  { y  e.  A  |  y R x }  e.  _V )
54ex 440 . . . 4  |-  ( { y  e.  A  | 
y R x }  C_ 
{ y  e.  A  |  y S x }  ->  ( {
y  e.  A  | 
y S x }  e.  _V  ->  { y  e.  A  |  y R x }  e.  _V ) )
63, 5syl 17 . . 3  |-  ( R 
C_  S  ->  ( { y  e.  A  |  y S x }  e.  _V  ->  { y  e.  A  | 
y R x }  e.  _V ) )
76ralimdv 2809 . 2  |-  ( R 
C_  S  ->  ( A. x  e.  A  { y  e.  A  |  y S x }  e.  _V  ->  A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V ) )
8 df-se 4812 . 2  |-  ( S Se  A  <->  A. x  e.  A  { y  e.  A  |  y S x }  e.  _V )
9 df-se 4812 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
107, 8, 93imtr4g 278 1  |-  ( R 
C_  S  ->  ( S Se  A  ->  R Se  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    e. wcel 1897   A.wral 2748   {crab 2752   _Vcvv 3056    C_ wss 3415   class class class wbr 4415   Se wse 4809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ral 2753  df-rab 2757  df-v 3058  df-in 3422  df-ss 3429  df-br 4416  df-se 4812
This theorem is referenced by:  seeq1  4824
  Copyright terms: Public domain W3C validator