MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sermono Structured version   Unicode version

Theorem sermono 12095
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-Jun-2013.)
Hypotheses
Ref Expression
sermono.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
sermono.2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
sermono.3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  RR )
sermono.4  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
Assertion
Ref Expression
sermono  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Distinct variable groups:    x, F    x, K    x, M    x, N    ph, x

Proof of Theorem sermono
Dummy variables  k 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 elfzuz 11673 . . . 4  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
3 sermono.1 . . . 4  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
4 uztrn 11087 . . . 4  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
52, 3, 4syl2anr 478 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  k  e.  ( ZZ>= `  M )
)
6 elfzuz3 11674 . . . . . . 7  |-  ( k  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  k )
)
76adantl 466 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  N  e.  ( ZZ>= `  k )
)
8 fzss2 11712 . . . . . 6  |-  ( N  e.  ( ZZ>= `  k
)  ->  ( M ... k )  C_  ( M ... N ) )
97, 8syl 16 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  ( M ... k )  C_  ( M ... N ) )
109sselda 3497 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  x  e.  ( M ... k
) )  ->  x  e.  ( M ... N
) )
11 sermono.3 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  RR )
1211adantlr 714 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  x  e.  ( M ... N
) )  ->  ( F `  x )  e.  RR )
1310, 12syldan 470 . . 3  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  x  e.  ( M ... k
) )  ->  ( F `  x )  e.  RR )
14 readdcl 9564 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
1514adantl 466 . . 3  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  +  y )  e.  RR )
165, 13, 15seqcl 12083 . 2  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
17 simpr 461 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( N  -  1 ) ) )
183adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ( ZZ>= `  M )
)
19 eluzelz 11080 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
2018, 19syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ZZ )
211adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  K )
)
22 eluzelz 11080 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ZZ )
2321, 22syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ZZ )
24 peano2zm 10895 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2523, 24syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
26 elfzelz 11677 . . . . . . . . 9  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ZZ )
2726adantl 466 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ZZ )
28 1zzd 10884 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  1  e.  ZZ )
29 fzaddel 11707 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( K ... ( N  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3020, 25, 27, 28, 29syl22anc 1224 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  e.  ( K ... ( N  -  1 ) )  <->  ( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
3117, 30mpbid 210 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... (
( N  -  1 )  +  1 ) ) )
32 zcn 10858 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
33 ax-1cn 9539 . . . . . . . . 9  |-  1  e.  CC
34 npcan 9818 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
3532, 33, 34sylancl 662 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
3623, 35syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
3736oveq2d 6291 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( K  + 
1 ) ... N
) )
3831, 37eleqtrd 2550 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
39 sermono.4 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
4039ralrimiva 2871 . . . . . 6  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) 0  <_  ( F `  x ) )
4140adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) 0  <_  ( F `  x )
)
42 fveq2 5857 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
4342breq2d 4452 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
0  <_  ( F `  x )  <->  0  <_  ( F `  ( k  +  1 ) ) ) )
4443rspcv 3203 . . . . 5  |-  ( ( k  +  1 )  e.  ( ( K  +  1 ) ... N )  ->  ( A. x  e.  (
( K  +  1 ) ... N ) 0  <_  ( F `  x )  ->  0  <_  ( F `  (
k  +  1 ) ) ) )
4538, 41, 44sylc 60 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  0  <_  ( F `  ( k  +  1 ) ) )
46 fzelp1 11721 . . . . . . . 8  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
4746adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( ( N  -  1 )  +  1 ) ) )
4836oveq2d 6291 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... ( ( N  - 
1 )  +  1 ) )  =  ( K ... N ) )
4947, 48eleqtrd 2550 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... N ) )
5049, 16syldan 470 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  RR )
51 fzss1 11711 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
5218, 51syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... N )  C_  ( M ... N ) )
53 fzp1elp1 11722 . . . . . . . . 9  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  (
k  +  1 )  e.  ( K ... ( ( N  - 
1 )  +  1 ) ) )
5453adantl 466 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
5554, 48eleqtrd 2550 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... N
) )
5652, 55sseldd 3498 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( M ... N
) )
5711ralrimiva 2871 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  RR )
5857adantr 465 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( M ... N
) ( F `  x )  e.  RR )
5942eleq1d 2529 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( k  +  1 ) )  e.  RR ) )
6059rspcv 3203 . . . . . 6  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  ( A. x  e.  ( M ... N ) ( F `  x )  e.  RR  ->  ( F `  ( k  +  1 ) )  e.  RR ) )
6156, 58, 60sylc 60 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
6250, 61addge01d 10129 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( 0  <_  ( F `  ( k  +  1 ) )  <->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) ) )
6345, 62mpbid 210 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  ( (  seq M (  +  ,  F ) `  k
)  +  ( F `
 ( k  +  1 ) ) ) )
6449, 5syldan 470 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
65 seqp1 12078 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  (  seq M (  +  ,  F ) `  (
k  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  k )  +  ( F `  ( k  +  1 ) ) ) )
6664, 65syl 16 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  +  1 ) )  =  ( (  seq M (  +  ,  F ) `  k )  +  ( F `  ( k  +  1 ) ) ) )
6763, 66breqtrrd 4466 . 2  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  <_  (  seq M (  +  ,  F ) `  (
k  +  1 ) ) )
681, 16, 67monoord 12093 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 K )  <_ 
(  seq M (  +  ,  F ) `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807    C_ wss 3469   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    <_ cle 9618    - cmin 9794   ZZcz 10853   ZZ>=cuz 11071   ...cfz 11661    seqcseq 12063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-seq 12064
This theorem is referenced by:  cvgcmp  13579  isumsup2  13610  climcnds  13615  ovolunlem1a  21635  mblfinlem2  29616
  Copyright terms: Public domain W3C validator