MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serf0 Structured version   Visualization version   Unicode version

Theorem serf0 13824
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
caucvgb.1  |-  Z  =  ( ZZ>= `  M )
serf0.2  |-  ( ph  ->  M  e.  ZZ )
serf0.3  |-  ( ph  ->  F  e.  V )
serf0.4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
serf0.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
serf0  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    k, F    k, M    k, Z    ph, k    k, V

Proof of Theorem serf0
Dummy variables  j  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serf0.4 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
2 serf0.2 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 caucvgb.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
43caucvgb 13823 . . . . . 6  |-  ( ( M  e.  ZZ  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  (  seq M
(  +  ,  F
)  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 j ) ) )  <  x ) ) )
52, 1, 4syl2anc 673 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 j ) ) )  <  x ) ) )
61, 5mpbid 215 . . . 4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  j
) ) )  < 
x ) )
73cau3 13495 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x ) )
86, 7sylib 201 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x ) )
93peano2uzs 11236 . . . . . . 7  |-  ( j  e.  Z  ->  (
j  +  1 )  e.  Z )
109adantl 473 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  1 )  e.  Z )
11 eluzelz 11192 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  j
)  ->  m  e.  ZZ )
12 uzid 11197 . . . . . . . . . 10  |-  ( m  e.  ZZ  ->  m  e.  ( ZZ>= `  m )
)
13 peano2uz 11235 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  m
)  ->  ( m  +  1 )  e.  ( ZZ>= `  m )
)
14 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( k  =  ( m  + 
1 )  ->  (  seq M (  +  ,  F ) `  k
)  =  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) )
1514oveq2d 6324 . . . . . . . . . . . . 13  |-  ( k  =  ( m  + 
1 )  ->  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) )  =  ( (  seq M (  +  ,  F ) `
 m )  -  (  seq M (  +  ,  F ) `  ( m  +  1
) ) ) )
1615fveq2d 5883 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  k
) ) )  =  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) ) )
1716breq1d 4405 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  (
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x  <->  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1817rspcv 3132 . . . . . . . . . 10  |-  ( ( m  +  1 )  e.  ( ZZ>= `  m
)  ->  ( A. k  e.  ( ZZ>= `  m ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 k ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1911, 12, 13, 184syl 19 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  m ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 k ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
2019adantld 474 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
(  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
2120ralimia 2794 . . . . . . 7  |-  ( A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x )
22 simpr 468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
2322, 3syl6eleq 2559 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
24 eluzelz 11192 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2523, 24syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ZZ )
26 eluzp1m1 11206 . . . . . . . . . . 11  |-  ( ( j  e.  ZZ  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  -> 
( k  -  1 )  e.  ( ZZ>= `  j ) )
2725, 26sylan 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( k  -  1 )  e.  ( ZZ>= `  j )
)
28 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( m  =  ( k  - 
1 )  ->  (  seq M (  +  ,  F ) `  m
)  =  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )
29 oveq1 6315 . . . . . . . . . . . . . . 15  |-  ( m  =  ( k  - 
1 )  ->  (
m  +  1 )  =  ( ( k  -  1 )  +  1 ) )
3029fveq2d 5883 . . . . . . . . . . . . . 14  |-  ( m  =  ( k  - 
1 )  ->  (  seq M (  +  ,  F ) `  (
m  +  1 ) )  =  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) )
3128, 30oveq12d 6326 . . . . . . . . . . . . 13  |-  ( m  =  ( k  - 
1 )  ->  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  -  (  seq M (  +  ,  F ) `  ( ( k  - 
1 )  +  1 ) ) ) )
3231fveq2d 5883 . . . . . . . . . . . 12  |-  ( m  =  ( k  - 
1 )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  =  ( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) ) )
3332breq1d 4405 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x  <->  ( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
3433rspcv 3132 . . . . . . . . . 10  |-  ( ( k  -  1 )  e.  ( ZZ>= `  j
)  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
3527, 34syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
36 serf0.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
373, 2, 36serf 12279 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
3837ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  seq M (  +  ,  F ) : Z --> CC )
393uztrn2 11200 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  ( k  -  1 )  e.  ( ZZ>= `  j ) )  -> 
( k  -  1 )  e.  Z )
4022, 39sylan 479 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  -  1 )  e.  ( ZZ>= `  j
) )  ->  (
k  -  1 )  e.  Z )
4127, 40syldan 478 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( k  -  1 )  e.  Z )
4238, 41ffvelrnd 6038 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  -  1 ) )  e.  CC )
433uztrn2 11200 . . . . . . . . . . . . . 14  |-  ( ( ( j  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  -> 
k  e.  Z )
4410, 43sylan 479 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  Z )
4538, 44ffvelrnd 6038 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  CC )
4642, 45abssubd 13592 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  k )
) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  k )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) ) ) )
47 eluzelz 11192 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  (
j  +  1 ) )  ->  k  e.  ZZ )
4847adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ZZ )
4948zcnd 11064 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  CC )
50 ax-1cn 9615 . . . . . . . . . . . . . . 15  |-  1  e.  CC
51 npcan 9904 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
5249, 50, 51sylancl 675 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (
k  -  1 )  +  1 )  =  k )
5352fveq2d 5883 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) )  =  (  seq M (  +  ,  F ) `  k
) )
5453oveq2d 6324 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  (
k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  -  (  seq M (  +  ,  F ) `  k ) ) )
5554fveq2d 5883 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  ( (
k  -  1 )  +  1 ) ) ) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  k
) ) ) )
562ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  M  e.  ZZ )
57 eluzp1p1 11208 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
5823, 57syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
59 eqid 2471 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
6059uztrn2 11200 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  +  1 )  e.  ( ZZ>= `  ( M  +  1
) )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
6158, 60sylan 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
62 seqm1 12268 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  +  ,  F ) `  k )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  +  ( F `  k
) ) )
6356, 61, 62syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  =  ( (  seq M (  +  ,  F ) `  ( k  -  1 ) )  +  ( F `  k ) ) )
6463oveq1d 6323 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  k
)  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )  =  ( ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  +  ( F `  k ) )  -  (  seq M (  +  ,  F ) `  ( k  -  1 ) ) ) )
6536adantlr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
6644, 65syldan 478 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( F `  k )  e.  CC )
6742, 66pncan2d 10007 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  +  ( F `  k ) )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )  =  ( F `  k ) )
6864, 67eqtr2d 2506 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( F `  k )  =  ( (  seq M (  +  ,  F ) `
 k )  -  (  seq M (  +  ,  F ) `  ( k  -  1 ) ) ) )
6968fveq2d 5883 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  k )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) ) ) )
7046, 55, 693eqtr4d 2515 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  ( (
k  -  1 )  +  1 ) ) ) )  =  ( abs `  ( F `
 k ) ) )
7170breq1d 4405 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( ( abs `  ( (  seq M (  +  ,  F ) `  (
k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x  <->  ( abs `  ( F `  k )
)  <  x )
)
7235, 71sylibd 222 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  ( F `  k )
)  <  x )
)
7372ralrimdva 2812 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x  ->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
7421, 73syl5 32 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
75 fveq2 5879 . . . . . . . 8  |-  ( n  =  ( j  +  1 )  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  ( j  +  1 ) ) )
7675raleqdv 2979 . . . . . . 7  |-  ( n  =  ( j  +  1 )  ->  ( A. k  e.  ( ZZ>=
`  n ) ( abs `  ( F `
 k ) )  <  x  <->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
7776rspcev 3136 . . . . . 6  |-  ( ( ( j  +  1 )  e.  Z  /\  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k
) )  <  x
)  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
7810, 74, 77syl6an 554 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
7978rexlimdva 2871 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
8079ralimdv 2806 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
818, 80mpd 15 . 2  |-  ( ph  ->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( abs `  ( F `  k
) )  <  x
)
82 serf0.3 . . 3  |-  ( ph  ->  F  e.  V )
83 eqidd 2472 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
843, 2, 82, 83, 36clim0c 13648 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
8581, 84mpbird 240 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   class class class wbr 4395   dom cdm 4839   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   0cc0 9557   1c1 9558    + caddc 9560    < clt 9693    - cmin 9880   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325    seqcseq 12251   abscabs 13374    ~~> cli 13625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-ico 11666  df-fz 11811  df-fl 12061  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630
This theorem is referenced by:  mertenslem2  14018  radcnvlem1  23447  dvgrat  36731  expfac  37835
  Copyright terms: Public domain W3C validator