MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqval Structured version   Unicode version

Theorem seqval 12221
Description: Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
seqval.1  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
Assertion
Ref Expression
seqval  |-  seq M
(  .+  ,  F
)  =  ran  R
Distinct variable groups:    w, F, x, y, z    w,  .+ , x, y, z    x, M, y
Allowed substitution hints:    R( x, y, z, w)    M( z, w)

Proof of Theorem seqval
StepHypRef Expression
1 df-ima 4867 . 2  |-  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )  =  ran  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  |`  om )
2 df-seq 12211 . 2  |-  seq M
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
3 seqval.1 . . . 4  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
4 eqid 2429 . . . . . . 7  |-  _V  =  _V
5 vex 3090 . . . . . . . . 9  |-  x  e. 
_V
6 vex 3090 . . . . . . . . 9  |-  y  e. 
_V
7 oveq1 6312 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
z  +  1 )  =  ( x  + 
1 ) )
87fveq2d 5885 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
98oveq2d 6321 . . . . . . . . . 10  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
10 oveq1 6312 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
11 eqid 2429 . . . . . . . . . 10  |-  ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  _V ,  w  e.  _V  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
12 ovex 6333 . . . . . . . . . 10  |-  ( y 
.+  ( F `  ( x  +  1
) ) )  e. 
_V
139, 10, 11, 12ovmpt2 6446 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
145, 6, 13mp2an 676 . . . . . . . 8  |-  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) )
1514opeq2i 4194 . . . . . . 7  |-  <. (
x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >.  =  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.
164, 4, 15mpt2eq123i 6368 . . . . . 6  |-  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )  =  ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )
17 rdgeq1 7137 . . . . . 6  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
)  =  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  ->  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e. 
_V ,  w  e. 
_V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) )
1816, 17ax-mp 5 . . . . 5  |-  rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )
1918reseq1i 5121 . . . 4  |-  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e. 
_V ,  w  e. 
_V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. )  |`  om )  =  ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
203, 19eqtri 2458 . . 3  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
2120rneqi 5081 . 2  |-  ran  R  =  ran  ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
221, 2, 213eqtr4i 2468 1  |-  seq M
(  .+  ,  F
)  =  ran  R
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    e. wcel 1870   _Vcvv 3087   <.cop 4008   ran crn 4855    |` cres 4856   "cima 4857   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   omcom 6706   reccrdg 7135   1c1 9539    + caddc 9541    seqcseq 12210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-iota 5565  df-fun 5603  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-seq 12211
This theorem is referenced by:  seqfn  12222  seq1  12223  seqp1  12225
  Copyright terms: Public domain W3C validator