MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqsplit Structured version   Unicode version

Theorem seqsplit 11831
Description: Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqsplit.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqsplit.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqsplit.3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1
) ) )
seqsplit.4  |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )
seqsplit.5  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( F `  x )  e.  S
)
Assertion
Ref Expression
seqsplit  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 N )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  N )
) )
Distinct variable groups:    x, y,
z, F    x, K, y, z    x, M, y, z    ph, x, y, z   
x, N, y, z   
x,  .+ , y, z    x, S, y, z

Proof of Theorem seqsplit
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqsplit.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1
) ) )
2 eluzfz2 11451 . . 3  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  N  e.  ( ( M  + 
1 ) ... N
) )
31, 2syl 16 . 2  |-  ( ph  ->  N  e.  ( ( M  +  1 ) ... N ) )
4 eleq1 2498 . . . . . 6  |-  ( x  =  ( M  + 
1 )  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  ( M  +  1 )  e.  ( ( M  + 
1 ) ... N
) ) )
5 fveq2 5686 . . . . . . 7  |-  ( x  =  ( M  + 
1 )  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  ( M  +  1 ) ) )
6 fveq2 5686 . . . . . . . 8  |-  ( x  =  ( M  + 
1 )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  ( M  +  1 ) ) )
76oveq2d 6102 . . . . . . 7  |-  ( x  =  ( M  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  ( M  +  1 ) ) ) )
85, 7eqeq12d 2452 . . . . . 6  |-  ( x  =  ( M  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) )
94, 8imbi12d 320 . . . . 5  |-  ( x  =  ( M  + 
1 )  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( ( M  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) )
109imbi2d 316 . . . 4  |-  ( x  =  ( M  + 
1 )  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( ( M  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) ) )
11 eleq1 2498 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  n  e.  ( ( M  + 
1 ) ... N
) ) )
12 fveq2 5686 . . . . . . 7  |-  ( x  =  n  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  n
) )
13 fveq2 5686 . . . . . . . 8  |-  ( x  =  n  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  n
) )
1413oveq2d 6102 . . . . . . 7  |-  ( x  =  n  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
) ) )
1512, 14eqeq12d 2452 . . . . . 6  |-  ( x  =  n  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) )
1611, 15imbi12d 320 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( n  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) )
1716imbi2d 316 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( n  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) ) )
18 eleq1 2498 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  ( n  +  1 )  e.  ( ( M  + 
1 ) ... N
) ) )
19 fveq2 5686 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  (
n  +  1 ) ) )
20 fveq2 5686 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  (
n  +  1 ) ) )
2120oveq2d 6102 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  (
n  +  1 ) ) ) )
2219, 21eqeq12d 2452 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) )
2318, 22imbi12d 320 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( (
n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
2423imbi2d 316 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) ) )
25 eleq1 2498 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  N  e.  ( ( M  + 
1 ) ... N
) ) )
26 fveq2 5686 . . . . . . 7  |-  ( x  =  N  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  N
) )
27 fveq2 5686 . . . . . . . 8  |-  ( x  =  N  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  N
) )
2827oveq2d 6102 . . . . . . 7  |-  ( x  =  N  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  N
) ) )
2926, 28eqeq12d 2452 . . . . . 6  |-  ( x  =  N  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) )
3025, 29imbi12d 320 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( N  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) )
3130imbi2d 316 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) ) )
32 seqsplit.4 . . . . . . . 8  |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )
33 seqp1 11813 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  K
)  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  ( F `  ( M  +  1 ) ) ) )
3432, 33syl 16 . . . . . . 7  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  ( F `  ( M  +  1 ) ) ) )
35 eluzel2 10858 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( M  +  1 )  e.  ZZ )
36 seq1 11811 . . . . . . . . 9  |-  ( ( M  +  1 )  e.  ZZ  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  ( M  +  1 ) )  =  ( F `
 ( M  + 
1 ) ) )
371, 35, 363syl 20 . . . . . . . 8  |-  ( ph  ->  (  seq ( M  +  1 ) ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( F `  ( M  +  1 ) ) )
3837oveq2d 6102 . . . . . . 7  |-  ( ph  ->  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  ( M  +  1 ) ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  ( F `  ( M  +  1 ) ) ) )
3934, 38eqtr4d 2473 . . . . . 6  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  ( M  +  1 ) ) ) )
4039a1d 25 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) )
4140a1i 11 . . . 4  |-  ( ( M  +  1 )  e.  ZZ  ->  ( ph  ->  ( ( M  +  1 )  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) )
42 peano2fzr 11455 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  ->  n  e.  ( ( M  +  1 ) ... N ) )
4342adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ( M  + 
1 ) ... N
) )
4443expr 615 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  n  e.  ( ( M  + 
1 ) ... N
) ) )
4544imim1d 75 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
n  e.  ( ( M  +  1 ) ... N )  -> 
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) )  -> 
( ( n  + 
1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  n )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) )
46 oveq1 6093 . . . . . . . . . 10  |-  ( (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  ->  (
(  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) ) )
47 simprl 755 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ZZ>= `  ( M  +  1 ) ) )
48 peano2uz 10900 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ZZ>= `  K
)  ->  ( M  +  1 )  e.  ( ZZ>= `  K )
)
4932, 48syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= `  K ) )
5049adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( M  +  1 )  e.  ( ZZ>= `  K
) )
51 uztrn 10869 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  ( M  +  1 )  e.  ( ZZ>= `  K
) )  ->  n  e.  ( ZZ>= `  K )
)
5247, 50, 51syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ZZ>= `  K )
)
53 seqp1 11813 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  K
)  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5452, 53syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
55 seqp1 11813 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  ->  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5647, 55syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5756oveq2d 6102 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  ( (  seq ( M  +  1 ) (  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
58 simpl 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ph )
59 eluzelz 10862 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  ( ZZ>= `  K
)  ->  M  e.  ZZ )
6032, 59syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ZZ )
61 peano2uzr 10902 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  N  e.  ( ZZ>= `  M ) )
6260, 1, 61syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
63 fzss2 11490 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K ... M )  C_  ( K ... N ) )
6462, 63syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ... M
)  C_  ( K ... N ) )
6564sselda 3351 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( K ... M ) )  ->  x  e.  ( K ... N ) )
66 seqsplit.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( F `  x )  e.  S
)
6765, 66syldan 470 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( K ... M ) )  ->  ( F `  x )  e.  S
)
68 seqsplit.1 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6932, 67, 68seqcl 11818 . . . . . . . . . . . . . 14  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 M )  e.  S )
7069adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq K (  .+  ,  F ) `  M
)  e.  S )
71 elfzuz3 11442 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( M  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  n )
)
72 fzss2 11490 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( ( M  +  1 ) ... n )  C_  ( ( M  + 
1 ) ... N
) )
7343, 71, 723syl 20 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
( M  +  1 ) ... n ) 
C_  ( ( M  +  1 ) ... N ) )
74 fzss1 11489 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  +  1 )  e.  ( ZZ>= `  K
)  ->  ( ( M  +  1 ) ... N )  C_  ( K ... N ) )
7532, 48, 743syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( K ... N ) )
7675adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
( M  +  1 ) ... N ) 
C_  ( K ... N ) )
7773, 76sstrd 3361 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
( M  +  1 ) ... n ) 
C_  ( K ... N ) )
7877sselda 3351 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  x  e.  ( ( M  +  1 ) ... n ) )  ->  x  e.  ( K ... N ) )
7966adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  x  e.  ( K ... N ) )  ->  ( F `  x )  e.  S
)
8078, 79syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  x  e.  ( ( M  +  1 ) ... n ) )  ->  ( F `  x )  e.  S
)
8168adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8247, 80, 81seqcl 11818 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  n
)  e.  S )
83 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  -> 
( n  +  1 )  e.  ( ( M  +  1 ) ... N ) )
84 ssel2 3346 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  + 
1 ) ... N
)  C_  ( K ... N )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  -> 
( n  +  1 )  e.  ( K ... N ) )
8575, 83, 84syl2an 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
n  +  1 )  e.  ( K ... N ) )
8666ralrimiva 2794 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  ( K ... N ) ( F `  x
)  e.  S )
8786adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  A. x  e.  ( K ... N
) ( F `  x )  e.  S
)
88 fveq2 5686 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
8988eleq1d 2504 . . . . . . . . . . . . . . 15  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( n  +  1 ) )  e.  S
) )
9089rspcv 3064 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( K ... N )  ->  ( A. x  e.  ( K ... N ) ( F `  x )  e.  S  ->  ( F `  ( n  +  1 ) )  e.  S ) )
9185, 87, 90sylc 60 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  S )
92 seqsplit.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
9392caovassg 6256 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (  seq K (  .+  ,  F ) `  M
)  e.  S  /\  (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
)  e.  S  /\  ( F `  ( n  +  1 ) )  e.  S ) )  ->  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  ( (  seq ( M  +  1 ) (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) ) )
9458, 70, 82, 91, 93syl13anc 1220 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  n )
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  ( (  seq ( M  +  1 ) (  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
9557, 94eqtr4d 2473 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  =  ( ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  n )
)  .+  ( F `  ( n  +  1 ) ) ) )
9654, 95eqeq12d 2452 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  <->  ( (  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) ) ) )
9746, 96syl5ibr 221 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) )
9897expr 615 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
9998a2d 26 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( n  +  1 )  e.  ( ( M  +  1 ) ... N )  -> 
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) )  -> 
( ( n  + 
1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
10045, 99syld 44 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
n  e.  ( ( M  +  1 ) ... N )  -> 
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) )  -> 
( ( n  + 
1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
101100expcom 435 . . . . 5  |-  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ph  ->  ( ( n  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) )  -> 
( ( n  + 
1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) ) )
102101a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ( ph  ->  ( n  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  -> 
(  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) ) )
10310, 17, 24, 31, 41, 102uzind4 10904 . . 3  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  N )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) )
1041, 103mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  N )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) )
1053, 104mpd 15 1  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 N )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  N )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710    C_ wss 3323   ` cfv 5413  (class class class)co 6086   1c1 9275    + caddc 9277   ZZcz 10638   ZZ>=cuz 10853   ...cfz 11429    seqcseq 11798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-seq 11799
This theorem is referenced by:  seq1p  11832  seqf1olem2  11838  bcval5  12086  clim2ser  13124  clim2ser2  13125  isumsplit  13295  gsumccat  15510  mulgnndir  15640  clim2div  27355  mblfinlem2  28382  fmul01lt1lem1  29718  fmul01lt1lem2  29719
  Copyright terms: Public domain W3C validator