Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seqpo Structured version   Unicode version

Theorem seqpo 28792
Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
seqpo  |-  ( ( R  Po  A  /\  F : NN --> A )  ->  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  <->  A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
) ) )
Distinct variable groups:    m, F, n, s    A, m, n, s    R, m, n, s

Proof of Theorem seqpo
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5800 . . . . . . . . . 10  |-  ( p  =  ( m  + 
1 )  ->  ( F `  p )  =  ( F `  ( m  +  1
) ) )
21breq2d 4413 . . . . . . . . 9  |-  ( p  =  ( m  + 
1 )  ->  (
( F `  m
) R ( F `
 p )  <->  ( F `  m ) R ( F `  ( m  +  1 ) ) ) )
32imbi2d 316 . . . . . . . 8  |-  ( p  =  ( m  + 
1 )  ->  (
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 p ) )  <-> 
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 ( m  + 
1 ) ) ) ) )
4 fveq2 5800 . . . . . . . . . 10  |-  ( p  =  q  ->  ( F `  p )  =  ( F `  q ) )
54breq2d 4413 . . . . . . . . 9  |-  ( p  =  q  ->  (
( F `  m
) R ( F `
 p )  <->  ( F `  m ) R ( F `  q ) ) )
65imbi2d 316 . . . . . . . 8  |-  ( p  =  q  ->  (
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 p ) )  <-> 
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 q ) ) ) )
7 fveq2 5800 . . . . . . . . . 10  |-  ( p  =  ( q  +  1 )  ->  ( F `  p )  =  ( F `  ( q  +  1 ) ) )
87breq2d 4413 . . . . . . . . 9  |-  ( p  =  ( q  +  1 )  ->  (
( F `  m
) R ( F `
 p )  <->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) )
98imbi2d 316 . . . . . . . 8  |-  ( p  =  ( q  +  1 )  ->  (
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 p ) )  <-> 
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 ( q  +  1 ) ) ) ) )
10 fveq2 5800 . . . . . . . . . 10  |-  ( p  =  n  ->  ( F `  p )  =  ( F `  n ) )
1110breq2d 4413 . . . . . . . . 9  |-  ( p  =  n  ->  (
( F `  m
) R ( F `
 p )  <->  ( F `  m ) R ( F `  n ) ) )
1211imbi2d 316 . . . . . . . 8  |-  ( p  =  n  ->  (
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 p ) )  <-> 
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 n ) ) ) )
13 fveq2 5800 . . . . . . . . . . . 12  |-  ( s  =  m  ->  ( F `  s )  =  ( F `  m ) )
14 oveq1 6208 . . . . . . . . . . . . 13  |-  ( s  =  m  ->  (
s  +  1 )  =  ( m  + 
1 ) )
1514fveq2d 5804 . . . . . . . . . . . 12  |-  ( s  =  m  ->  ( F `  ( s  +  1 ) )  =  ( F `  ( m  +  1
) ) )
1613, 15breq12d 4414 . . . . . . . . . . 11  |-  ( s  =  m  ->  (
( F `  s
) R ( F `
 ( s  +  1 ) )  <->  ( F `  m ) R ( F `  ( m  +  1 ) ) ) )
1716rspccva 3178 . . . . . . . . . 10  |-  ( ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN )  ->  ( F `  m ) R ( F `  ( m  +  1
) ) )
1817adantl 466 . . . . . . . . 9  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  ( F `  m ) R ( F `  ( m  +  1
) ) )
1918a1i 11 . . . . . . . 8  |-  ( ( m  +  1 )  e.  ZZ  ->  (
( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 ( m  + 
1 ) ) ) )
20 peano2nn 10446 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
21 elnnuz 11009 . . . . . . . . . . . . . . . 16  |-  ( ( m  +  1 )  e.  NN  <->  ( m  +  1 )  e.  ( ZZ>= `  1 )
)
2220, 21sylib 196 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  ( ZZ>= `  1
) )
23 uztrn 10989 . . . . . . . . . . . . . . . . 17  |-  ( ( q  e.  ( ZZ>= `  ( m  +  1
) )  /\  (
m  +  1 )  e.  ( ZZ>= `  1
) )  ->  q  e.  ( ZZ>= `  1 )
)
24 elnnuz 11009 . . . . . . . . . . . . . . . . 17  |-  ( q  e.  NN  <->  q  e.  ( ZZ>= `  1 )
)
2523, 24sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( q  e.  ( ZZ>= `  ( m  +  1
) )  /\  (
m  +  1 )  e.  ( ZZ>= `  1
) )  ->  q  e.  NN )
2625expcom 435 . . . . . . . . . . . . . . 15  |-  ( ( m  +  1 )  e.  ( ZZ>= `  1
)  ->  ( q  e.  ( ZZ>= `  ( m  +  1 ) )  ->  q  e.  NN ) )
2722, 26syl 16 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
q  e.  ( ZZ>= `  ( m  +  1
) )  ->  q  e.  NN ) )
2827imdistani 690 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  q  e.  ( ZZ>= `  ( m  +  1
) ) )  -> 
( m  e.  NN  /\  q  e.  NN ) )
29 fveq2 5800 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  q  ->  ( F `  s )  =  ( F `  q ) )
30 oveq1 6208 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  q  ->  (
s  +  1 )  =  ( q  +  1 ) )
3130fveq2d 5804 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  q  ->  ( F `  ( s  +  1 ) )  =  ( F `  ( q  +  1 ) ) )
3229, 31breq12d 4414 . . . . . . . . . . . . . . . . 17  |-  ( s  =  q  ->  (
( F `  s
) R ( F `
 ( s  +  1 ) )  <->  ( F `  q ) R ( F `  ( q  +  1 ) ) ) )
3332rspccva 3178 . . . . . . . . . . . . . . . 16  |-  ( ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  q  e.  NN )  ->  ( F `  q ) R ( F `  ( q  +  1 ) ) )
3433ad2ant2l 745 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( F `  q ) R ( F `  ( q  +  1 ) ) )
3534ex 434 . . . . . . . . . . . . . 14  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  ( (
m  e.  NN  /\  q  e.  NN )  ->  ( F `  q
) R ( F `
 ( q  +  1 ) ) ) )
36 ffvelrn 5951 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> A  /\  m  e.  NN )  ->  ( F `  m
)  e.  A )
3736adantrr 716 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( F `  m )  e.  A
)
38 ffvelrn 5951 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> A  /\  q  e.  NN )  ->  ( F `  q
)  e.  A )
3938adantrl 715 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( F `  q )  e.  A
)
40 peano2nn 10446 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  NN  ->  (
q  +  1 )  e.  NN )
41 ffvelrn 5951 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : NN --> A  /\  ( q  +  1 )  e.  NN )  ->  ( F `  ( q  +  1 ) )  e.  A
)
4240, 41sylan2 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> A  /\  q  e.  NN )  ->  ( F `  (
q  +  1 ) )  e.  A )
4342adantrl 715 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( F `  ( q  +  1 ) )  e.  A
)
4437, 39, 433jca 1168 . . . . . . . . . . . . . . . . 17  |-  ( ( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( ( F `  m )  e.  A  /\  ( F `  q )  e.  A  /\  ( F `  ( q  +  1 ) )  e.  A ) )
45 potr 4762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  Po  A  /\  ( ( F `  m )  e.  A  /\  ( F `  q
)  e.  A  /\  ( F `  ( q  +  1 ) )  e.  A ) )  ->  ( ( ( F `  m ) R ( F `  q )  /\  ( F `  q ) R ( F `  ( q  +  1 ) ) )  -> 
( F `  m
) R ( F `
 ( q  +  1 ) ) ) )
4645expcomd 438 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  Po  A  /\  ( ( F `  m )  e.  A  /\  ( F `  q
)  e.  A  /\  ( F `  ( q  +  1 ) )  e.  A ) )  ->  ( ( F `
 q ) R ( F `  (
q  +  1 ) )  ->  ( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
4746ex 434 . . . . . . . . . . . . . . . . 17  |-  ( R  Po  A  ->  (
( ( F `  m )  e.  A  /\  ( F `  q
)  e.  A  /\  ( F `  ( q  +  1 ) )  e.  A )  -> 
( ( F `  q ) R ( F `  ( q  +  1 ) )  ->  ( ( F `
 m ) R ( F `  q
)  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) ) )
4844, 47syl5 32 . . . . . . . . . . . . . . . 16  |-  ( R  Po  A  ->  (
( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  -> 
( ( F `  q ) R ( F `  ( q  +  1 ) )  ->  ( ( F `
 m ) R ( F `  q
)  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) ) )
4948expdimp 437 . . . . . . . . . . . . . . 15  |-  ( ( R  Po  A  /\  F : NN --> A )  ->  ( ( m  e.  NN  /\  q  e.  NN )  ->  (
( F `  q
) R ( F `
 ( q  +  1 ) )  -> 
( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) ) )
5049adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  ( (
m  e.  NN  /\  q  e.  NN )  ->  ( ( F `  q ) R ( F `  ( q  +  1 ) )  ->  ( ( F `
 m ) R ( F `  q
)  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) ) )
5135, 50mpdd 40 . . . . . . . . . . . . 13  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  ( (
m  e.  NN  /\  q  e.  NN )  ->  ( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
5228, 51syl5 32 . . . . . . . . . . . 12  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  ( (
m  e.  NN  /\  q  e.  ( ZZ>= `  ( m  +  1
) ) )  -> 
( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
5352expdimp 437 . . . . . . . . . . 11  |-  ( ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  /\  m  e.  NN )  ->  ( q  e.  (
ZZ>= `  ( m  + 
1 ) )  -> 
( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
5453anasss 647 . . . . . . . . . 10  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  (
q  e.  ( ZZ>= `  ( m  +  1
) )  ->  (
( F `  m
) R ( F `
 q )  -> 
( F `  m
) R ( F `
 ( q  +  1 ) ) ) ) )
5554com12 31 . . . . . . . . 9  |-  ( q  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( (
( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  (
( F `  m
) R ( F `
 q )  -> 
( F `  m
) R ( F `
 ( q  +  1 ) ) ) ) )
5655a2d 26 . . . . . . . 8  |-  ( q  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( (
( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 q ) )  ->  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
573, 6, 9, 12, 19, 56uzind4 11024 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( (
( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  ( F `  m ) R ( F `  n ) ) )
5857com12 31 . . . . . 6  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  (
n  e.  ( ZZ>= `  ( m  +  1
) )  ->  ( F `  m ) R ( F `  n ) ) )
5958ralrimiv 2828 . . . . 5  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  A. n  e.  ( ZZ>= `  ( m  +  1 ) ) ( F `  m
) R ( F `
 n ) )
6059anassrs 648 . . . 4  |-  ( ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  /\  m  e.  NN )  ->  A. n  e.  (
ZZ>= `  ( m  + 
1 ) ) ( F `  m ) R ( F `  n ) )
6160ralrimiva 2830 . . 3  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1 ) ) ( F `  m
) R ( F `
 n ) )
6261ex 434 . 2  |-  ( ( R  Po  A  /\  F : NN --> A )  ->  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  ->  A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
) ) )
63 oveq1 6208 . . . . . . . 8  |-  ( m  =  s  ->  (
m  +  1 )  =  ( s  +  1 ) )
6463fveq2d 5804 . . . . . . 7  |-  ( m  =  s  ->  ( ZZ>=
`  ( m  + 
1 ) )  =  ( ZZ>= `  ( s  +  1 ) ) )
65 fveq2 5800 . . . . . . . 8  |-  ( m  =  s  ->  ( F `  m )  =  ( F `  s ) )
6665breq1d 4411 . . . . . . 7  |-  ( m  =  s  ->  (
( F `  m
) R ( F `
 n )  <->  ( F `  s ) R ( F `  n ) ) )
6764, 66raleqbidv 3037 . . . . . 6  |-  ( m  =  s  ->  ( A. n  e.  ( ZZ>=
`  ( m  + 
1 ) ) ( F `  m ) R ( F `  n )  <->  A. n  e.  ( ZZ>= `  ( s  +  1 ) ) ( F `  s
) R ( F `
 n ) ) )
6867rspcv 3175 . . . . 5  |-  ( s  e.  NN  ->  ( A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
)  ->  A. n  e.  ( ZZ>= `  ( s  +  1 ) ) ( F `  s
) R ( F `
 n ) ) )
6968imdistanri 691 . . . 4  |-  ( ( A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
)  /\  s  e.  NN )  ->  ( A. n  e.  ( ZZ>= `  ( s  +  1 ) ) ( F `
 s ) R ( F `  n
)  /\  s  e.  NN ) )
70 peano2nn 10446 . . . . . . 7  |-  ( s  e.  NN  ->  (
s  +  1 )  e.  NN )
7170nnzd 10858 . . . . . 6  |-  ( s  e.  NN  ->  (
s  +  1 )  e.  ZZ )
72 uzid 10987 . . . . . 6  |-  ( ( s  +  1 )  e.  ZZ  ->  (
s  +  1 )  e.  ( ZZ>= `  (
s  +  1 ) ) )
7371, 72syl 16 . . . . 5  |-  ( s  e.  NN  ->  (
s  +  1 )  e.  ( ZZ>= `  (
s  +  1 ) ) )
74 fveq2 5800 . . . . . . 7  |-  ( n  =  ( s  +  1 )  ->  ( F `  n )  =  ( F `  ( s  +  1 ) ) )
7574breq2d 4413 . . . . . 6  |-  ( n  =  ( s  +  1 )  ->  (
( F `  s
) R ( F `
 n )  <->  ( F `  s ) R ( F `  ( s  +  1 ) ) ) )
7675rspccva 3178 . . . . 5  |-  ( ( A. n  e.  (
ZZ>= `  ( s  +  1 ) ) ( F `  s ) R ( F `  n )  /\  (
s  +  1 )  e.  ( ZZ>= `  (
s  +  1 ) ) )  ->  ( F `  s ) R ( F `  ( s  +  1 ) ) )
7773, 76sylan2 474 . . . 4  |-  ( ( A. n  e.  (
ZZ>= `  ( s  +  1 ) ) ( F `  s ) R ( F `  n )  /\  s  e.  NN )  ->  ( F `  s ) R ( F `  ( s  +  1 ) ) )
7869, 77syl 16 . . 3  |-  ( ( A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
)  /\  s  e.  NN )  ->  ( F `
 s ) R ( F `  (
s  +  1 ) ) )
7978ralrimiva 2830 . 2  |-  ( A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1 ) ) ( F `  m
) R ( F `
 n )  ->  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )
8062, 79impbid1 203 1  |-  ( ( R  Po  A  /\  F : NN --> A )  ->  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  <->  A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   class class class wbr 4401    Po wpo 4748   -->wf 5523   ` cfv 5527  (class class class)co 6201   1c1 9395    + caddc 9397   NNcn 10434   ZZcz 10758   ZZ>=cuz 10973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-recs 6943  df-rdg 6977  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-n0 10692  df-z 10759  df-uz 10974
This theorem is referenced by:  incsequz2  28794
  Copyright terms: Public domain W3C validator