MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem4 Structured version   Unicode version

Theorem seqomlem4 6904
Description: Lemma for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a  |-  Q  =  rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)
Assertion
Ref Expression
seqomlem4  |-  ( A  e.  om  ->  (
( Q " om ) `  suc  A )  =  ( A F ( ( Q " om ) `  A ) ) )
Distinct variable groups:    Q, i,
v    A, i, v    i, F, v
Allowed substitution hints:    I( v, i)

Proof of Theorem seqomlem4
StepHypRef Expression
1 peano2 6495 . . . . . . 7  |-  ( A  e.  om  ->  suc  A  e.  om )
2 fvres 5701 . . . . . . 7  |-  ( suc 
A  e.  om  ->  ( ( Q  |`  om ) `  suc  A )  =  ( Q `  suc  A ) )
31, 2syl 16 . . . . . 6  |-  ( A  e.  om  ->  (
( Q  |`  om ) `  suc  A )  =  ( Q `  suc  A ) )
4 frsuc 6888 . . . . . . . 8  |-  ( A  e.  om  ->  (
( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om ) `  suc  A )  =  ( ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) `  (
( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om ) `  A ) ) )
5 fvres 5701 . . . . . . . . . 10  |-  ( suc 
A  e.  om  ->  ( ( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om ) `  suc  A )  =  ( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. ) `  suc  A
) )
61, 5syl 16 . . . . . . . . 9  |-  ( A  e.  om  ->  (
( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om ) `  suc  A )  =  ( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. ) `  suc  A
) )
7 seqomlem.a . . . . . . . . . 10  |-  Q  =  rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)
87fveq1i 5689 . . . . . . . . 9  |-  ( Q `
 suc  A )  =  ( rec (
( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) ,  <. (/) ,  (  _I  `  I )
>. ) `  suc  A
)
96, 8syl6eqr 2491 . . . . . . . 8  |-  ( A  e.  om  ->  (
( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om ) `  suc  A )  =  ( Q `  suc  A ) )
10 fvres 5701 . . . . . . . . . 10  |-  ( A  e.  om  ->  (
( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om ) `  A )  =  ( rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
) `  A )
)
117fveq1i 5689 . . . . . . . . . 10  |-  ( Q `
 A )  =  ( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. ) `  A )
1210, 11syl6eqr 2491 . . . . . . . . 9  |-  ( A  e.  om  ->  (
( rec ( ( i  e.  om , 
v  e.  _V  |->  <. suc  i ,  ( i F v ) >.
) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om ) `  A )  =  ( Q `  A ) )
1312fveq2d 5692 . . . . . . . 8  |-  ( A  e.  om  ->  (
( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) `  ( ( rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)  |`  om ) `  A ) )  =  ( ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) `  ( Q `  A )
) )
144, 9, 133eqtr3d 2481 . . . . . . 7  |-  ( A  e.  om  ->  ( Q `  suc  A )  =  ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) `  ( Q `  A
) ) )
157seqomlem1 6901 . . . . . . . 8  |-  ( A  e.  om  ->  ( Q `  A )  =  <. A ,  ( 2nd `  ( Q `
 A ) )
>. )
1615fveq2d 5692 . . . . . . 7  |-  ( A  e.  om  ->  (
( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) `  ( Q `
 A ) )  =  ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) `  <. A ,  ( 2nd `  ( Q `
 A ) )
>. ) )
17 df-ov 6093 . . . . . . . 8  |-  ( A ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) ( 2nd `  ( Q `  A )
) )  =  ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) `  <. A , 
( 2nd `  ( Q `  A )
) >. )
18 fvex 5698 . . . . . . . . . 10  |-  ( 2nd `  ( Q `  A
) )  e.  _V
19 suceq 4780 . . . . . . . . . . . 12  |-  ( i  =  A  ->  suc  i  =  suc  A )
20 oveq1 6097 . . . . . . . . . . . 12  |-  ( i  =  A  ->  (
i F v )  =  ( A F v ) )
2119, 20opeq12d 4064 . . . . . . . . . . 11  |-  ( i  =  A  ->  <. suc  i ,  ( i F v ) >.  =  <. suc 
A ,  ( A F v ) >.
)
22 oveq2 6098 . . . . . . . . . . . 12  |-  ( v  =  ( 2nd `  ( Q `  A )
)  ->  ( A F v )  =  ( A F ( 2nd `  ( Q `
 A ) ) ) )
2322opeq2d 4063 . . . . . . . . . . 11  |-  ( v  =  ( 2nd `  ( Q `  A )
)  ->  <. suc  A ,  ( A F v ) >.  =  <. suc 
A ,  ( A F ( 2nd `  ( Q `  A )
) ) >. )
24 eqid 2441 . . . . . . . . . . 11  |-  ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. )  =  ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. )
25 opex 4553 . . . . . . . . . . 11  |-  <. suc  A ,  ( A F ( 2nd `  ( Q `  A )
) ) >.  e.  _V
2621, 23, 24, 25ovmpt2 6225 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( 2nd `  ( Q `
 A ) )  e.  _V )  -> 
( A ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. )
( 2nd `  ( Q `  A )
) )  =  <. suc 
A ,  ( A F ( 2nd `  ( Q `  A )
) ) >. )
2718, 26mpan2 666 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) ( 2nd `  ( Q `  A
) ) )  = 
<. suc  A ,  ( A F ( 2nd `  ( Q `  A
) ) ) >.
)
28 fvres 5701 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  om  ->  (
( Q  |`  om ) `  A )  =  ( Q `  A ) )
2928, 15eqtrd 2473 . . . . . . . . . . . . . . . 16  |-  ( A  e.  om  ->  (
( Q  |`  om ) `  A )  =  <. A ,  ( 2nd `  ( Q `  A )
) >. )
30 frfnom 6886 . . . . . . . . . . . . . . . . . 18  |-  ( rec ( ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) ,  <. (/)
,  (  _I  `  I ) >. )  |` 
om )  Fn  om
317reseq1i 5102 . . . . . . . . . . . . . . . . . . 19  |-  ( Q  |`  om )  =  ( rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)  |`  om )
3231fneq1i 5502 . . . . . . . . . . . . . . . . . 18  |-  ( ( Q  |`  om )  Fn  om  <->  ( rec (
( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om )  Fn  om )
3330, 32mpbir 209 . . . . . . . . . . . . . . . . 17  |-  ( Q  |`  om )  Fn  om
34 fnfvelrn 5837 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Q  |`  om )  Fn  om  /\  A  e. 
om )  ->  (
( Q  |`  om ) `  A )  e.  ran  ( Q  |`  om )
)
3533, 34mpan 665 . . . . . . . . . . . . . . . 16  |-  ( A  e.  om  ->  (
( Q  |`  om ) `  A )  e.  ran  ( Q  |`  om )
)
3629, 35eqeltrrd 2516 . . . . . . . . . . . . . . 15  |-  ( A  e.  om  ->  <. A , 
( 2nd `  ( Q `  A )
) >.  e.  ran  ( Q  |`  om ) )
37 df-ima 4849 . . . . . . . . . . . . . . 15  |-  ( Q
" om )  =  ran  ( Q  |`  om )
3836, 37syl6eleqr 2532 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  <. A , 
( 2nd `  ( Q `  A )
) >.  e.  ( Q
" om ) )
39 df-br 4290 . . . . . . . . . . . . . 14  |-  ( A ( Q " om ) ( 2nd `  ( Q `  A )
)  <->  <. A ,  ( 2nd `  ( Q `
 A ) )
>.  e.  ( Q " om ) )
4038, 39sylibr 212 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  A
( Q " om ) ( 2nd `  ( Q `  A )
) )
417seqomlem2 6902 . . . . . . . . . . . . . 14  |-  ( Q
" om )  Fn 
om
42 fnbrfvb 5729 . . . . . . . . . . . . . 14  |-  ( ( ( Q " om )  Fn  om  /\  A  e.  om )  ->  (
( ( Q " om ) `  A )  =  ( 2nd `  ( Q `  A )
)  <->  A ( Q " om ) ( 2nd `  ( Q `  A )
) ) )
4341, 42mpan 665 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  (
( ( Q " om ) `  A )  =  ( 2nd `  ( Q `  A )
)  <->  A ( Q " om ) ( 2nd `  ( Q `  A )
) ) )
4440, 43mpbird 232 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  (
( Q " om ) `  A )  =  ( 2nd `  ( Q `  A )
) )
4544eqcomd 2446 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( 2nd `  ( Q `  A ) )  =  ( ( Q " om ) `  A ) )
4645oveq2d 6106 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( A F ( 2nd `  ( Q `  A )
) )  =  ( A F ( ( Q " om ) `  A ) ) )
4746opeq2d 4063 . . . . . . . . 9  |-  ( A  e.  om  ->  <. suc  A ,  ( A F ( 2nd `  ( Q `  A )
) ) >.  =  <. suc 
A ,  ( A F ( ( Q
" om ) `  A ) ) >.
)
4827, 47eqtrd 2473 . . . . . . . 8  |-  ( A  e.  om  ->  ( A ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) ( 2nd `  ( Q `  A
) ) )  = 
<. suc  A ,  ( A F ( ( Q " om ) `  A ) ) >.
)
4917, 48syl5eqr 2487 . . . . . . 7  |-  ( A  e.  om  ->  (
( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) `  <. A , 
( 2nd `  ( Q `  A )
) >. )  =  <. suc 
A ,  ( A F ( ( Q
" om ) `  A ) ) >.
)
5014, 16, 493eqtrd 2477 . . . . . 6  |-  ( A  e.  om  ->  ( Q `  suc  A )  =  <. suc  A , 
( A F ( ( Q " om ) `  A )
) >. )
513, 50eqtrd 2473 . . . . 5  |-  ( A  e.  om  ->  (
( Q  |`  om ) `  suc  A )  = 
<. suc  A ,  ( A F ( ( Q " om ) `  A ) ) >.
)
52 fnfvelrn 5837 . . . . . 6  |-  ( ( ( Q  |`  om )  Fn  om  /\  suc  A  e.  om )  ->  (
( Q  |`  om ) `  suc  A )  e. 
ran  ( Q  |`  om ) )
5333, 1, 52sylancr 658 . . . . 5  |-  ( A  e.  om  ->  (
( Q  |`  om ) `  suc  A )  e. 
ran  ( Q  |`  om ) )
5451, 53eqeltrrd 2516 . . . 4  |-  ( A  e.  om  ->  <. suc  A ,  ( A F ( ( Q " om ) `  A ) ) >.  e.  ran  ( Q  |`  om )
)
5554, 37syl6eleqr 2532 . . 3  |-  ( A  e.  om  ->  <. suc  A ,  ( A F ( ( Q " om ) `  A ) ) >.  e.  ( Q " om ) )
56 df-br 4290 . . 3  |-  ( suc 
A ( Q " om ) ( A F ( ( Q " om ) `  A ) )  <->  <. suc  A , 
( A F ( ( Q " om ) `  A )
) >.  e.  ( Q
" om ) )
5755, 56sylibr 212 . 2  |-  ( A  e.  om  ->  suc  A ( Q " om ) ( A F ( ( Q " om ) `  A ) ) )
58 fnbrfvb 5729 . . 3  |-  ( ( ( Q " om )  Fn  om  /\  suc  A  e.  om )  -> 
( ( ( Q
" om ) `  suc  A )  =  ( A F ( ( Q " om ) `  A ) )  <->  suc  A ( Q " om )
( A F ( ( Q " om ) `  A )
) ) )
5941, 1, 58sylancr 658 . 2  |-  ( A  e.  om  ->  (
( ( Q " om ) `  suc  A
)  =  ( A F ( ( Q
" om ) `  A ) )  <->  suc  A ( Q " om )
( A F ( ( Q " om ) `  A )
) ) )
6057, 59mpbird 232 1  |-  ( A  e.  om  ->  (
( Q " om ) `  suc  A )  =  ( A F ( ( Q " om ) `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1364    e. wcel 1761   _Vcvv 2970   (/)c0 3634   <.cop 3880   class class class wbr 4289    _I cid 4627   suc csuc 4717   ran crn 4837    |` cres 4838   "cima 4839    Fn wfn 5410   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   omcom 6475   2ndc2nd 6575   reccrdg 6861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862
This theorem is referenced by:  seqomsuc  6908
  Copyright terms: Public domain W3C validator