MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem0 Structured version   Unicode version

Theorem seqomlem0 7111
Description: Lemma for seq𝜔. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomlem0  |-  rec (
( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a F b )
>. ) ,  <. (/) ,  (  _I  `  I )
>. )  =  rec ( ( c  e. 
om ,  d  e. 
_V  |->  <. suc  c , 
( c F d ) >. ) ,  <. (/)
,  (  _I  `  I ) >. )
Distinct variable groups:    F, a,
b, c, d    I,
a, b, c, d

Proof of Theorem seqomlem0
StepHypRef Expression
1 suceq 4943 . . . 4  |-  ( a  =  c  ->  suc  a  =  suc  c )
2 oveq1 6289 . . . 4  |-  ( a  =  c  ->  (
a F b )  =  ( c F b ) )
31, 2opeq12d 4221 . . 3  |-  ( a  =  c  ->  <. suc  a ,  ( a F b ) >.  =  <. suc  c ,  ( c F b ) >.
)
4 oveq2 6290 . . . 4  |-  ( b  =  d  ->  (
c F b )  =  ( c F d ) )
54opeq2d 4220 . . 3  |-  ( b  =  d  ->  <. suc  c ,  ( c F b ) >.  =  <. suc  c ,  ( c F d ) >.
)
63, 5cbvmpt2v 6359 . 2  |-  ( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a F b ) >. )  =  ( c  e. 
om ,  d  e. 
_V  |->  <. suc  c , 
( c F d ) >. )
7 rdgeq1 7074 . 2  |-  ( ( a  e.  om , 
b  e.  _V  |->  <. suc  a ,  ( a F b ) >.
)  =  ( c  e.  om ,  d  e.  _V  |->  <. suc  c ,  ( c F d ) >. )  ->  rec ( ( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a F b ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)  =  rec (
( c  e.  om ,  d  e.  _V  |->  <. suc  c ,  ( c F d )
>. ) ,  <. (/) ,  (  _I  `  I )
>. ) )
86, 7ax-mp 5 1  |-  rec (
( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a F b )
>. ) ,  <. (/) ,  (  _I  `  I )
>. )  =  rec ( ( c  e. 
om ,  d  e. 
_V  |->  <. suc  c , 
( c F d ) >. ) ,  <. (/)
,  (  _I  `  I ) >. )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379   _Vcvv 3113   (/)c0 3785   <.cop 4033    _I cid 4790   suc csuc 4880   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   omcom 6678   reccrdg 7072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-suc 4884  df-iota 5549  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-recs 7039  df-rdg 7073
This theorem is referenced by:  fnseqom  7117  seqom0g  7118  seqomsuc  7119
  Copyright terms: Public domain W3C validator