MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomeq12 Structured version   Unicode version

Theorem seqomeq12 7111
Description: Equality theorem for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomeq12  |-  ( ( A  =  B  /\  C  =  D )  -> seq𝜔 ( A ,  C )  = seq𝜔 ( B ,  D
) )

Proof of Theorem seqomeq12
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 6283 . . . . . . 7  |-  ( A  =  B  ->  (
a A b )  =  ( a B b ) )
21opeq2d 4215 . . . . . 6  |-  ( A  =  B  ->  <. suc  a ,  ( a A b ) >.  =  <. suc  a ,  ( a B b ) >.
)
323ad2ant1 1012 . . . . 5  |-  ( ( A  =  B  /\  a  e.  om  /\  b  e.  _V )  ->  <. suc  a ,  ( a A b ) >.  =  <. suc  a ,  ( a B b ) >.
)
43mpt2eq3dva 6338 . . . 4  |-  ( A  =  B  ->  (
a  e.  om , 
b  e.  _V  |->  <. suc  a ,  ( a A b ) >.
)  =  ( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a B b ) >. )
)
5 fveq2 5859 . . . . 5  |-  ( C  =  D  ->  (  _I  `  C )  =  (  _I  `  D
) )
65opeq2d 4215 . . . 4  |-  ( C  =  D  ->  <. (/) ,  (  _I  `  C )
>.  =  <. (/) ,  (  _I  `  D )
>. )
7 rdgeq12 7071 . . . 4  |-  ( ( ( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a A b )
>. )  =  (
a  e.  om , 
b  e.  _V  |->  <. suc  a ,  ( a B b ) >.
)  /\  <. (/) ,  (  _I  `  C )
>.  =  <. (/) ,  (  _I  `  D )
>. )  ->  rec (
( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a A b )
>. ) ,  <. (/) ,  (  _I  `  C )
>. )  =  rec ( ( a  e. 
om ,  b  e. 
_V  |->  <. suc  a , 
( a B b ) >. ) ,  <. (/)
,  (  _I  `  D ) >. )
)
84, 6, 7syl2an 477 . . 3  |-  ( ( A  =  B  /\  C  =  D )  ->  rec ( ( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a A b ) >. ) ,  <. (/) ,  (  _I 
`  C ) >.
)  =  rec (
( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a B b )
>. ) ,  <. (/) ,  (  _I  `  D )
>. ) )
98imaeq1d 5329 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( rec ( ( a  e.  om , 
b  e.  _V  |->  <. suc  a ,  ( a A b ) >.
) ,  <. (/) ,  (  _I  `  C )
>. ) " om )  =  ( rec (
( a  e.  om ,  b  e.  _V  |->  <. suc  a ,  ( a B b )
>. ) ,  <. (/) ,  (  _I  `  D )
>. ) " om )
)
10 df-seqom 7105 . 2  |- seq𝜔 ( A ,  C
)  =  ( rec ( ( a  e. 
om ,  b  e. 
_V  |->  <. suc  a , 
( a A b ) >. ) ,  <. (/)
,  (  _I  `  C ) >. ) " om )
11 df-seqom 7105 . 2  |- seq𝜔 ( B ,  D
)  =  ( rec ( ( a  e. 
om ,  b  e. 
_V  |->  <. suc  a , 
( a B b ) >. ) ,  <. (/)
,  (  _I  `  D ) >. ) " om )
129, 10, 113eqtr4g 2528 1  |-  ( ( A  =  B  /\  C  =  D )  -> seq𝜔 ( A ,  C )  = seq𝜔 ( B ,  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   _Vcvv 3108   (/)c0 3780   <.cop 4028    _I cid 4785   suc csuc 4875   "cima 4997   ` cfv 5581  (class class class)co 6277    |-> cmpt2 6279   omcom 6673   reccrdg 7067  seq𝜔cseqom 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-cnv 5002  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-recs 7034  df-rdg 7068  df-seqom 7105
This theorem is referenced by:  cantnffval  8071  cantnfval  8078  cantnfres  8087  cantnfvalOLD  8108  cnfcomlem  8134  cnfcom2  8137  cnfcomlemOLD  8142  cnfcom2OLD  8145  fin23lem33  8716
  Copyright terms: Public domain W3C validator