MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof2 Structured version   Unicode version

Theorem seqof2 12117
Description: Distribute function operation through a sequence. Maps-to notation version of seqof 12116. (Contributed by Mario Carneiro, 7-Jul-2017.)
Hypotheses
Ref Expression
seqof2.1  |-  ( ph  ->  A  e.  V )
seqof2.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqof2.3  |-  ( ph  ->  ( M ... N
)  C_  B )
seqof2.4  |-  ( (
ph  /\  ( x  e.  B  /\  z  e.  A ) )  ->  X  e.  W )
Assertion
Ref Expression
seqof2  |-  ( ph  ->  (  seq M (  oF  .+  , 
( x  e.  B  |->  ( z  e.  A  |->  X ) ) ) `
 N )  =  ( z  e.  A  |->  (  seq M ( 
.+  ,  ( x  e.  B  |->  X ) ) `  N ) ) )
Distinct variable groups:    x, z, A    x, M, z    x, N, z    ph, x, z   
z,  .+    x, B
Allowed substitution hints:    B( z)    .+ ( x)    V( x, z)    W( x, z)    X( x, z)

Proof of Theorem seqof2
Dummy variables  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof2.1 . . 3  |-  ( ph  ->  A  e.  V )
2 seqof2.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 nfv 1726 . . . . . 6  |-  F/ x
( ph  /\  n  e.  ( M ... N
) )
4 nffvmpt1 5811 . . . . . . 7  |-  F/_ x
( ( x  e.  B  |->  ( z  e.  A  |->  X ) ) `
 n )
5 nfcv 2562 . . . . . . . 8  |-  F/_ x A
6 nffvmpt1 5811 . . . . . . . 8  |-  F/_ x
( ( x  e.  B  |->  X ) `  n )
75, 6nfmpt 4480 . . . . . . 7  |-  F/_ x
( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  n ) )
84, 7nfeq 2573 . . . . . 6  |-  F/ x
( ( x  e.  B  |->  ( z  e.  A  |->  X ) ) `
 n )  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  n ) )
93, 8nfim 1946 . . . . 5  |-  F/ x
( ( ph  /\  n  e.  ( M ... N ) )  -> 
( ( x  e.  B  |->  ( z  e.  A  |->  X ) ) `
 n )  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  n ) ) )
10 eleq1 2472 . . . . . . 7  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
1110anbi2d 702 . . . . . 6  |-  ( x  =  n  ->  (
( ph  /\  x  e.  ( M ... N
) )  <->  ( ph  /\  n  e.  ( M ... N ) ) ) )
12 fveq2 5803 . . . . . . 7  |-  ( x  =  n  ->  (
( x  e.  B  |->  ( z  e.  A  |->  X ) ) `  x )  =  ( ( x  e.  B  |->  ( z  e.  A  |->  X ) ) `  n ) )
13 fveq2 5803 . . . . . . . 8  |-  ( x  =  n  ->  (
( x  e.  B  |->  X ) `  x
)  =  ( ( x  e.  B  |->  X ) `  n ) )
1413mpteq2dv 4479 . . . . . . 7  |-  ( x  =  n  ->  (
z  e.  A  |->  ( ( x  e.  B  |->  X ) `  x
) )  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  n
) ) )
1512, 14eqeq12d 2422 . . . . . 6  |-  ( x  =  n  ->  (
( ( x  e.  B  |->  ( z  e.  A  |->  X ) ) `
 x )  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  x ) )  <->  ( (
x  e.  B  |->  ( z  e.  A  |->  X ) ) `  n
)  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  n ) ) ) )
1611, 15imbi12d 318 . . . . 5  |-  ( x  =  n  ->  (
( ( ph  /\  x  e.  ( M ... N ) )  -> 
( ( x  e.  B  |->  ( z  e.  A  |->  X ) ) `
 x )  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  x ) ) )  <-> 
( ( ph  /\  n  e.  ( M ... N ) )  -> 
( ( x  e.  B  |->  ( z  e.  A  |->  X ) ) `
 n )  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  n ) ) ) ) )
17 seqof2.3 . . . . . . . 8  |-  ( ph  ->  ( M ... N
)  C_  B )
1817sselda 3439 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  e.  B )
191adantr 463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  A  e.  V )
20 mptexg 6077 . . . . . . . 8  |-  ( A  e.  V  ->  (
z  e.  A  |->  X )  e.  _V )
2119, 20syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( z  e.  A  |->  X )  e.  _V )
22 eqid 2400 . . . . . . . 8  |-  ( x  e.  B  |->  ( z  e.  A  |->  X ) )  =  ( x  e.  B  |->  ( z  e.  A  |->  X ) )
2322fvmpt2 5895 . . . . . . 7  |-  ( ( x  e.  B  /\  ( z  e.  A  |->  X )  e.  _V )  ->  ( ( x  e.  B  |->  ( z  e.  A  |->  X ) ) `  x )  =  ( z  e.  A  |->  X ) )
2418, 21, 23syl2anc 659 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( (
x  e.  B  |->  ( z  e.  A  |->  X ) ) `  x
)  =  ( z  e.  A  |->  X ) )
2518adantr 463 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( M ... N
) )  /\  z  e.  A )  ->  x  e.  B )
26 simpll 752 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( M ... N
) )  /\  z  e.  A )  ->  ph )
27 simpr 459 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( M ... N
) )  /\  z  e.  A )  ->  z  e.  A )
28 seqof2.4 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  z  e.  A ) )  ->  X  e.  W )
2926, 25, 27, 28syl12anc 1226 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( M ... N
) )  /\  z  e.  A )  ->  X  e.  W )
30 eqid 2400 . . . . . . . . 9  |-  ( x  e.  B  |->  X )  =  ( x  e.  B  |->  X )
3130fvmpt2 5895 . . . . . . . 8  |-  ( ( x  e.  B  /\  X  e.  W )  ->  ( ( x  e.  B  |->  X ) `  x )  =  X )
3225, 29, 31syl2anc 659 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( M ... N
) )  /\  z  e.  A )  ->  (
( x  e.  B  |->  X ) `  x
)  =  X )
3332mpteq2dva 4478 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  x ) )  =  ( z  e.  A  |->  X ) )
3424, 33eqtr4d 2444 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( (
x  e.  B  |->  ( z  e.  A  |->  X ) ) `  x
)  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  x ) ) )
359, 16, 34chvar 2038 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( (
x  e.  B  |->  ( z  e.  A  |->  X ) ) `  n
)  =  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  n ) ) )
36 nfcv 2562 . . . . 5  |-  F/_ y
( ( x  e.  B  |->  X ) `  n )
37 nfcsb1v 3386 . . . . . 6  |-  F/_ z [_ y  /  z ]_ ( x  e.  B  |->  X )
38 nfcv 2562 . . . . . 6  |-  F/_ z
n
3937, 38nffv 5810 . . . . 5  |-  F/_ z
( [_ y  /  z ]_ ( x  e.  B  |->  X ) `  n
)
40 csbeq1a 3379 . . . . . 6  |-  ( z  =  y  ->  (
x  e.  B  |->  X )  =  [_ y  /  z ]_ (
x  e.  B  |->  X ) )
4140fveq1d 5805 . . . . 5  |-  ( z  =  y  ->  (
( x  e.  B  |->  X ) `  n
)  =  ( [_ y  /  z ]_ (
x  e.  B  |->  X ) `  n ) )
4236, 39, 41cbvmpt 4483 . . . 4  |-  ( z  e.  A  |->  ( ( x  e.  B  |->  X ) `  n ) )  =  ( y  e.  A  |->  ( [_ y  /  z ]_ (
x  e.  B  |->  X ) `  n ) )
4335, 42syl6eq 2457 . . 3  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( (
x  e.  B  |->  ( z  e.  A  |->  X ) ) `  n
)  =  ( y  e.  A  |->  ( [_ y  /  z ]_ (
x  e.  B  |->  X ) `  n ) ) )
441, 2, 43seqof 12116 . 2  |-  ( ph  ->  (  seq M (  oF  .+  , 
( x  e.  B  |->  ( z  e.  A  |->  X ) ) ) `
 N )  =  ( y  e.  A  |->  (  seq M ( 
.+  ,  [_ y  /  z ]_ (
x  e.  B  |->  X ) ) `  N
) ) )
45 nfcv 2562 . . 3  |-  F/_ y
(  seq M (  .+  ,  ( x  e.  B  |->  X ) ) `
 N )
46 nfcv 2562 . . . . 5  |-  F/_ z M
47 nfcv 2562 . . . . 5  |-  F/_ z  .+
4846, 47, 37nfseq 12069 . . . 4  |-  F/_ z  seq M (  .+  ,  [_ y  /  z ]_ ( x  e.  B  |->  X ) )
49 nfcv 2562 . . . 4  |-  F/_ z N
5048, 49nffv 5810 . . 3  |-  F/_ z
(  seq M (  .+  ,  [_ y  /  z ]_ ( x  e.  B  |->  X ) ) `  N )
5140seqeq3d 12067 . . . 4  |-  ( z  =  y  ->  seq M (  .+  , 
( x  e.  B  |->  X ) )  =  seq M (  .+  ,  [_ y  /  z ]_ ( x  e.  B  |->  X ) ) )
5251fveq1d 5805 . . 3  |-  ( z  =  y  ->  (  seq M (  .+  , 
( x  e.  B  |->  X ) ) `  N )  =  (  seq M (  .+  ,  [_ y  /  z ]_ ( x  e.  B  |->  X ) ) `  N ) )
5345, 50, 52cbvmpt 4483 . 2  |-  ( z  e.  A  |->  (  seq M (  .+  , 
( x  e.  B  |->  X ) ) `  N ) )  =  ( y  e.  A  |->  (  seq M ( 
.+  ,  [_ y  /  z ]_ (
x  e.  B  |->  X ) ) `  N
) )
5444, 53syl6eqr 2459 1  |-  ( ph  ->  (  seq M (  oF  .+  , 
( x  e.  B  |->  ( z  e.  A  |->  X ) ) ) `
 N )  =  ( z  e.  A  |->  (  seq M ( 
.+  ,  ( x  e.  B  |->  X ) ) `  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1403    e. wcel 1840   _Vcvv 3056   [_csb 3370    C_ wss 3411    |-> cmpt 4450   ` cfv 5523  (class class class)co 6232    oFcof 6473   ZZ>=cuz 11043   ...cfz 11641    seqcseq 12059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-of 6475  df-om 6637  df-1st 6736  df-2nd 6737  df-recs 6997  df-rdg 7031  df-er 7266  df-en 7473  df-dom 7474  df-sdom 7475  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-nn 10495  df-n0 10755  df-z 10824  df-uz 11044  df-fz 11642  df-seq 12060
This theorem is referenced by:  mtestbdd  22982  lgamgulm2  23581  lgamcvglem  23585
  Copyright terms: Public domain W3C validator