MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqm1 Structured version   Unicode version

Theorem seqm1 11806
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.)
Assertion
Ref Expression
seqm1  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )

Proof of Theorem seqm1
StepHypRef Expression
1 eluzp1m1 10871 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
2 seqp1 11804 . . 3  |-  ( ( N  -  1 )  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  F ) `  (
( N  -  1 )  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 ( ( N  -  1 )  +  1 ) ) ) )
31, 2syl 16 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  .+  ,  F ) `  (
( N  -  1 )  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 ( ( N  -  1 )  +  1 ) ) ) )
4 eluzelz 10857 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  N  e.  ZZ )
54zcnd 10735 . . . . 5  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  N  e.  CC )
6 ax-1cn 9327 . . . . 5  |-  1  e.  CC
7 npcan 9606 . . . . 5  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
85, 6, 7sylancl 655 . . . 4  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
98adantl 463 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( N  - 
1 )  +  1 )  =  N )
109fveq2d 5683 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  .+  ,  F ) `  (
( N  -  1 )  +  1 ) )  =  (  seq M (  .+  ,  F ) `  N
) )
119fveq2d 5683 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( F `  (
( N  -  1 )  +  1 ) )  =  ( F `
 N ) )
1211oveq2d 6096 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( (  seq M
(  .+  ,  F
) `  ( N  -  1 ) ) 
.+  ( F `  ( ( N  - 
1 )  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  ( N  -  1 ) ) 
.+  ( F `  N ) ) )
133, 10, 123eqtr3d 2473 1  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   ` cfv 5406  (class class class)co 6080   CCcc 9267   1c1 9270    + caddc 9272    - cmin 9582   ZZcz 10633   ZZ>=cuz 10848    seqcseq 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-nn 10310  df-n0 10567  df-z 10634  df-uz 10849  df-seq 11790
This theorem is referenced by:  seqf1olem2  11829  seqid  11834  seqz  11837  bcn2  12078  seqcoll  12199  serf0  13141  lgsval2lem  22529  cvmliftlem5  27025
  Copyright terms: Public domain W3C validator