MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid3 Structured version   Unicode version

Theorem seqid3 11850
Description: A sequence that consists entirely of zeroes (or whatever the identity  Z is for operation  .+) sums to zero. (Contributed by Mario Carneiro, 15-Dec-2014.)
Hypotheses
Ref Expression
seqid3.1  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
seqid3.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqid3.3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
Assertion
Ref Expression
seqid3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Distinct variable groups:    x,  .+    x, F    x, M    ph, x    x, Z    x, N

Proof of Theorem seqid3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 seqid3.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 seqid3.3 . . . 4  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
3 fvex 5701 . . . . 5  |-  ( F `
 x )  e. 
_V
43elsnc 3901 . . . 4  |-  ( ( F `  x )  e.  { Z }  <->  ( F `  x )  =  Z )
52, 4sylibr 212 . . 3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  { Z } )
6 seqid3.1 . . . . . 6  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
7 ovex 6116 . . . . . . 7  |-  ( Z 
.+  Z )  e. 
_V
87elsnc 3901 . . . . . 6  |-  ( ( Z  .+  Z )  e.  { Z }  <->  ( Z  .+  Z )  =  Z )
96, 8sylibr 212 . . . . 5  |-  ( ph  ->  ( Z  .+  Z
)  e.  { Z } )
10 elsni 3902 . . . . . . 7  |-  ( x  e.  { Z }  ->  x  =  Z )
11 elsni 3902 . . . . . . 7  |-  ( y  e.  { Z }  ->  y  =  Z )
1210, 11oveqan12d 6110 . . . . . 6  |-  ( ( x  e.  { Z }  /\  y  e.  { Z } )  ->  (
x  .+  y )  =  ( Z  .+  Z ) )
1312eleq1d 2509 . . . . 5  |-  ( ( x  e.  { Z }  /\  y  e.  { Z } )  ->  (
( x  .+  y
)  e.  { Z } 
<->  ( Z  .+  Z
)  e.  { Z } ) )
149, 13syl5ibrcom 222 . . . 4  |-  ( ph  ->  ( ( x  e. 
{ Z }  /\  y  e.  { Z } )  ->  (
x  .+  y )  e.  { Z } ) )
1514imp 429 . . 3  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  { Z } ) )  -> 
( x  .+  y
)  e.  { Z } )
161, 5, 15seqcl 11826 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e. 
{ Z } )
17 elsni 3902 . 2  |-  ( (  seq M (  .+  ,  F ) `  N
)  e.  { Z }  ->  (  seq M
(  .+  ,  F
) `  N )  =  Z )
1816, 17syl 16 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {csn 3877   ` cfv 5418  (class class class)co 6091   ZZ>=cuz 10861   ...cfz 11437    seqcseq 11806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862  df-fz 11438  df-seq 11807
This theorem is referenced by:  seqid  11851  ser0  11858  gsumval2  15513  mulgnn0z  15647  gsumval3OLD  16382  gsumval3  16385  lgsval2lem  22645  prodf1  27406
  Copyright terms: Public domain W3C validator