MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfveq2 Structured version   Unicode version

Theorem seqfveq2 12098
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq2.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
seqfveq2.2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  ( G `  K
) )
seqfveq2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
seqfveq2.4  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
seqfveq2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq K ( 
.+  ,  G ) `
 N ) )
Distinct variable groups:    k, F    k, G    k, K    k, N    ph, k
Allowed substitution hints:    .+ ( k)    M( k)

Proof of Theorem seqfveq2
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfveq2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eluzfz2 11695 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ( K ... N ) )
31, 2syl 16 . 2  |-  ( ph  ->  N  e.  ( K ... N ) )
4 eleq1 2539 . . . . . 6  |-  ( x  =  K  ->  (
x  e.  ( K ... N )  <->  K  e.  ( K ... N ) ) )
5 fveq2 5866 . . . . . . 7  |-  ( x  =  K  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  K
) )
6 fveq2 5866 . . . . . . 7  |-  ( x  =  K  ->  (  seq K (  .+  ,  G ) `  x
)  =  (  seq K (  .+  ,  G ) `  K
) )
75, 6eqeq12d 2489 . . . . . 6  |-  ( x  =  K  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  G ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq K ( 
.+  ,  G ) `
 K ) ) )
84, 7imbi12d 320 . . . . 5  |-  ( x  =  K  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq K ( 
.+  ,  G ) `
 x ) )  <-> 
( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq K ( 
.+  ,  G ) `
 K ) ) ) )
98imbi2d 316 . . . 4  |-  ( x  =  K  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  G ) `  x
) ) )  <->  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq K ( 
.+  ,  G ) `
 K ) ) ) ) )
10 eleq1 2539 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( K ... N )  <->  n  e.  ( K ... N ) ) )
11 fveq2 5866 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
12 fveq2 5866 . . . . . . 7  |-  ( x  =  n  ->  (  seq K (  .+  ,  G ) `  x
)  =  (  seq K (  .+  ,  G ) `  n
) )
1311, 12eqeq12d 2489 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  G ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq K ( 
.+  ,  G ) `
 n ) ) )
1410, 13imbi12d 320 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq K ( 
.+  ,  G ) `
 x ) )  <-> 
( n  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq K ( 
.+  ,  G ) `
 n ) ) ) )
1514imbi2d 316 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  G ) `  x
) ) )  <->  ( ph  ->  ( n  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq K ( 
.+  ,  G ) `
 n ) ) ) ) )
16 eleq1 2539 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( K ... N )  <->  ( n  +  1 )  e.  ( K ... N
) ) )
17 fveq2 5866 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fveq2 5866 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq K (  .+  ,  G ) `  x
)  =  (  seq K (  .+  ,  G ) `  (
n  +  1 ) ) )
1917, 18eqeq12d 2489 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  G ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq K
(  .+  ,  G
) `  ( n  +  1 ) ) ) )
2016, 19imbi12d 320 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq K ( 
.+  ,  G ) `
 x ) )  <-> 
( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq K
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) )
2120imbi2d 316 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  G ) `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq K
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) ) )
22 eleq1 2539 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( K ... N )  <->  N  e.  ( K ... N ) ) )
23 fveq2 5866 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
24 fveq2 5866 . . . . . . 7  |-  ( x  =  N  ->  (  seq K (  .+  ,  G ) `  x
)  =  (  seq K (  .+  ,  G ) `  N
) )
2523, 24eqeq12d 2489 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  G ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq K ( 
.+  ,  G ) `
 N ) ) )
2622, 25imbi12d 320 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq K ( 
.+  ,  G ) `
 x ) )  <-> 
( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq K ( 
.+  ,  G ) `
 N ) ) ) )
2726imbi2d 316 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  G ) `  x
) ) )  <->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq K ( 
.+  ,  G ) `
 N ) ) ) ) )
28 seqfveq2.2 . . . . . . 7  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  ( G `  K
) )
29 seqfveq2.1 . . . . . . . . 9  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
30 eluzelz 11092 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
3129, 30syl 16 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
32 seq1 12089 . . . . . . . 8  |-  ( K  e.  ZZ  ->  (  seq K (  .+  ,  G ) `  K
)  =  ( G `
 K ) )
3331, 32syl 16 . . . . . . 7  |-  ( ph  ->  (  seq K ( 
.+  ,  G ) `
 K )  =  ( G `  K
) )
3428, 33eqtr4d 2511 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  (  seq K ( 
.+  ,  G ) `
 K ) )
3534a1d 25 . . . . 5  |-  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq K ( 
.+  ,  G ) `
 K ) ) )
3635a1i 11 . . . 4  |-  ( K  e.  ZZ  ->  ( ph  ->  ( K  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq K (  .+  ,  G ) `  K
) ) ) )
37 peano2fzr 11700 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) )  ->  n  e.  ( K ... N ) )
3837adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( K ... N ) )
3938expr 615 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  +  1 )  e.  ( K ... N )  ->  n  e.  ( K ... N
) ) )
4039imim1d 75 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
) ) ) )
41 oveq1 6292 . . . . . . . . . 10  |-  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
)  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K
(  .+  ,  G
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )
42 simpl 457 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) )  ->  n  e.  ( ZZ>= `  K ) )
43 uztrn 11099 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
4442, 29, 43syl2anr 478 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
45 seqp1 12091 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
4644, 45syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
47 seqp1 12091 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  K
)  ->  (  seq K (  .+  ,  G ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
4847ad2antrl 727 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq K (  .+  ,  G ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
49 eluzp1p1 11108 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5049ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
51 elfzuz3 11686 . . . . . . . . . . . . . . . 16  |-  ( ( n  +  1 )  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
5251ad2antll 728 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
53 elfzuzb 11683 . . . . . . . . . . . . . . 15  |-  ( ( n  +  1 )  e.  ( ( K  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
5450, 52, 53sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
55 seqfveq2.4 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
5655ralrimiva 2878 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  ( ( K  +  1 ) ... N ) ( F `  k
)  =  ( G `
 k ) )
5756adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  A. k  e.  ( ( K  + 
1 ) ... N
) ( F `  k )  =  ( G `  k ) )
58 fveq2 5866 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
59 fveq2 5866 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
6058, 59eqeq12d 2489 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  ( n  +  1 ) )  =  ( G `  ( n  +  1 ) ) ) )
6160rspcv 3210 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( ( K  +  1 ) ... N )  ->  ( A. k  e.  (
( K  +  1 ) ... N ) ( F `  k
)  =  ( G `
 k )  -> 
( F `  (
n  +  1 ) )  =  ( G `
 ( n  + 
1 ) ) ) )
6254, 57, 61sylc 60 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( n  +  1 ) ) )
6362oveq2d 6301 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq K (  .+  ,  G ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K
(  .+  ,  G
) `  n )  .+  ( G `  (
n  +  1 ) ) ) )
6448, 63eqtr4d 2511 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq K (  .+  ,  G ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  G ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
6546, 64eqeq12d 2489 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq K (  .+  ,  G ) `  (
n  +  1 ) )  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K
(  .+  ,  G
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
6641, 65syl5ibr 221 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq K (  .+  ,  G ) `  (
n  +  1 ) ) ) )
6766expr 615 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  +  1 )  e.  ( K ... N )  ->  (
(  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq K (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
6867a2d 26 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq K (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
6940, 68syld 44 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq K (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
7069expcom 435 . . . . 5  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( ( n  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq K (  .+  ,  G ) `  (
n  +  1 ) ) ) ) ) )
7170a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  ( n  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq K (  .+  ,  G ) `  n
) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq K (  .+  ,  G ) `  (
n  +  1 ) ) ) ) ) )
729, 15, 21, 27, 36, 71uzind4 11140 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq K ( 
.+  ,  G ) `
 N ) ) ) )
731, 72mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq K ( 
.+  ,  G ) `
 N ) ) )
743, 73mpd 15 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq K ( 
.+  ,  G ) `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   ` cfv 5588  (class class class)co 6285   1c1 9494    + caddc 9496   ZZcz 10865   ZZ>=cuz 11083   ...cfz 11673    seqcseq 12076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11084  df-fz 11674  df-seq 12077
This theorem is referenced by:  seqfeq2  12099  seqfveq  12100  seqz  12124
  Copyright terms: Public domain W3C validator