MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf1olem2 Structured version   Unicode version

Theorem seqf1olem2 11829
Description: Lemma for seqf1o 11830. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqf1o.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqf1o.5  |-  ( ph  ->  C  C_  S )
seqf1olem.5  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) ) )
seqf1olem.6  |-  ( ph  ->  G : ( M ... ( N  + 
1 ) ) --> C )
seqf1olem.7  |-  J  =  ( k  e.  ( M ... N ) 
|->  ( F `  if ( k  <  K ,  k ,  ( k  +  1 ) ) ) )
seqf1olem.8  |-  K  =  ( `' F `  ( N  +  1
) )
seqf1olem.9  |-  ( ph  ->  A. g A. f
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) ) )
Assertion
Ref Expression
seqf1olem2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( G  o.  F ) ) `
 ( N  + 
1 ) )  =  (  seq M ( 
.+  ,  G ) `
 ( N  + 
1 ) ) )
Distinct variable groups:    f, g,
k, x, y, z, F    f, G, g, k, x, y, z   
f, M, g, k, x, y, z    .+ , f,
g, k, x, y, z    f, J, g, x, y, z    f, N, g, k, x, y, z    k, K, x, y, z    ph, f,
g, k, x, y, z    S, k, x, y, z    C, f, g, k, x, y, z
Allowed substitution hints:    S( f, g)    J( k)    K( f, g)

Proof of Theorem seqf1olem2
StepHypRef Expression
1 seqf1olem.6 . . . . . . . . . 10  |-  ( ph  ->  G : ( M ... ( N  + 
1 ) ) --> C )
2 ffn 5547 . . . . . . . . . 10  |-  ( G : ( M ... ( N  +  1
) ) --> C  ->  G  Fn  ( M ... ( N  +  1 ) ) )
31, 2syl 16 . . . . . . . . 9  |-  ( ph  ->  G  Fn  ( M ... ( N  + 
1 ) ) )
4 fzssp1 11487 . . . . . . . . 9  |-  ( M ... N )  C_  ( M ... ( N  +  1 ) )
5 fnssres 5512 . . . . . . . . 9  |-  ( ( G  Fn  ( M ... ( N  + 
1 ) )  /\  ( M ... N ) 
C_  ( M ... ( N  +  1
) ) )  -> 
( G  |`  ( M ... N ) )  Fn  ( M ... N ) )
63, 4, 5sylancl 655 . . . . . . . 8  |-  ( ph  ->  ( G  |`  ( M ... N ) )  Fn  ( M ... N ) )
7 fzfid 11778 . . . . . . . 8  |-  ( ph  ->  ( M ... N
)  e.  Fin )
8 fnfi 7577 . . . . . . . 8  |-  ( ( ( G  |`  ( M ... N ) )  Fn  ( M ... N )  /\  ( M ... N )  e. 
Fin )  ->  ( G  |`  ( M ... N ) )  e. 
Fin )
96, 7, 8syl2anc 654 . . . . . . 7  |-  ( ph  ->  ( G  |`  ( M ... N ) )  e.  Fin )
10 elex 2971 . . . . . . 7  |-  ( ( G  |`  ( M ... N ) )  e. 
Fin  ->  ( G  |`  ( M ... N ) )  e.  _V )
119, 10syl 16 . . . . . 6  |-  ( ph  ->  ( G  |`  ( M ... N ) )  e.  _V )
12 seqf1o.1 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
13 seqf1o.2 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
14 seqf1o.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
15 seqf1o.4 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
16 seqf1o.5 . . . . . . . . 9  |-  ( ph  ->  C  C_  S )
17 seqf1olem.5 . . . . . . . . 9  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) ) )
18 seqf1olem.7 . . . . . . . . 9  |-  J  =  ( k  e.  ( M ... N ) 
|->  ( F `  if ( k  <  K ,  k ,  ( k  +  1 ) ) ) )
19 seqf1olem.8 . . . . . . . . 9  |-  K  =  ( `' F `  ( N  +  1
) )
2012, 13, 14, 15, 16, 17, 1, 18, 19seqf1olem1 11828 . . . . . . . 8  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
21 f1of 5629 . . . . . . . 8  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
2220, 21syl 16 . . . . . . 7  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
23 fex2 6521 . . . . . . 7  |-  ( ( J : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin  /\  ( M ... N
)  e.  Fin )  ->  J  e.  _V )
2422, 7, 7, 23syl3anc 1211 . . . . . 6  |-  ( ph  ->  J  e.  _V )
2511, 24jca 529 . . . . 5  |-  ( ph  ->  ( ( G  |`  ( M ... N ) )  e.  _V  /\  J  e.  _V )
)
26 seqf1olem.9 . . . . 5  |-  ( ph  ->  A. g A. f
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) ) )
27 fssres 5566 . . . . . . 7  |-  ( ( G : ( M ... ( N  + 
1 ) ) --> C  /\  ( M ... N )  C_  ( M ... ( N  + 
1 ) ) )  ->  ( G  |`  ( M ... N ) ) : ( M ... N ) --> C )
281, 4, 27sylancl 655 . . . . . 6  |-  ( ph  ->  ( G  |`  ( M ... N ) ) : ( M ... N ) --> C )
2920, 28jca 529 . . . . 5  |-  ( ph  ->  ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  ( G  |`  ( M ... N ) ) : ( M ... N ) --> C ) )
30 f1oeq1 5620 . . . . . . . 8  |-  ( f  =  J  ->  (
f : ( M ... N ) -1-1-onto-> ( M ... N )  <->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
31 feq1 5530 . . . . . . . 8  |-  ( g  =  ( G  |`  ( M ... N ) )  ->  ( g : ( M ... N ) --> C  <->  ( G  |`  ( M ... N
) ) : ( M ... N ) --> C ) )
3230, 31bi2anan9r 862 . . . . . . 7  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  <->  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  ( G  |`  ( M ... N
) ) : ( M ... N ) --> C ) ) )
33 coeq1 4984 . . . . . . . . . . 11  |-  ( g  =  ( G  |`  ( M ... N ) )  ->  ( g  o.  f )  =  ( ( G  |`  ( M ... N ) )  o.  f ) )
34 coeq2 4985 . . . . . . . . . . 11  |-  ( f  =  J  ->  (
( G  |`  ( M ... N ) )  o.  f )  =  ( ( G  |`  ( M ... N ) )  o.  J ) )
3533, 34sylan9eq 2485 . . . . . . . . . 10  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (
g  o.  f )  =  ( ( G  |`  ( M ... N
) )  o.  J
) )
3635seqeq3d 11797 . . . . . . . . 9  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  seq M (  .+  , 
( g  o.  f
) )  =  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) )
3736fveq1d 5681 . . . . . . . 8  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) )
38 simpl 454 . . . . . . . . . 10  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  g  =  ( G  |`  ( M ... N ) ) )
3938seqeq3d 11797 . . . . . . . . 9  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  seq M (  .+  , 
g )  =  seq M (  .+  , 
( G  |`  ( M ... N ) ) ) )
4039fveq1d 5681 . . . . . . . 8  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (  seq M (  .+  , 
g ) `  N
)  =  (  seq M (  .+  , 
( G  |`  ( M ... N ) ) ) `  N ) )
4137, 40eqeq12d 2447 . . . . . . 7  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (
(  seq M (  .+  ,  ( g  o.  f ) ) `  N )  =  (  seq M (  .+  ,  g ) `  N )  <->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M
(  .+  ,  ( G  |`  ( M ... N ) ) ) `
 N ) ) )
4232, 41imbi12d 320 . . . . . 6  |-  ( ( g  =  ( G  |`  ( M ... N
) )  /\  f  =  J )  ->  (
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) )  <->  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  ( G  |`  ( M ... N
) ) : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M
(  .+  ,  ( G  |`  ( M ... N ) ) ) `
 N ) ) ) )
4342spc2gv 3049 . . . . 5  |-  ( ( ( G  |`  ( M ... N ) )  e.  _V  /\  J  e.  _V )  ->  ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) )  ->  (
( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  ( G  |`  ( M ... N ) ) : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M
(  .+  ,  ( G  |`  ( M ... N ) ) ) `
 N ) ) ) )
4425, 26, 29, 43syl3c 61 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M (  .+  ,  ( G  |`  ( M ... N ) ) ) `  N
) )
45 fvres 5692 . . . . . 6  |-  ( x  e.  ( M ... N )  ->  (
( G  |`  ( M ... N ) ) `
 x )  =  ( G `  x
) )
4645adantl 463 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( ( G  |`  ( M ... N ) ) `  x )  =  ( G `  x ) )
4715, 46seqfveq 11813 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  ( G  |`  ( M ... N
) ) ) `  N )  =  (  seq M (  .+  ,  G ) `  N
) )
4844, 47eqtrd 2465 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M (  .+  ,  G ) `  N
) )
4948oveq1d 6095 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N )  .+  ( G `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
5012adantlr 707 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
5114adantlr 707 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  (
x  e.  S  /\  y  e.  S  /\  z  e.  S )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
52 elfzuz3 11436 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
5352adantl 463 . . . . . 6  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  K )
)
54 eluzp1p1 10873 . . . . . 6  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5553, 54syl 16 . . . . 5  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
56 elfzuz 11435 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
5756adantl 463 . . . . 5  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  K  e.  ( ZZ>= `  M )
)
58 f1of 5629 . . . . . . . . . 10  |-  ( F : ( M ... ( N  +  1
) ) -1-1-onto-> ( M ... ( N  +  1 ) )  ->  F :
( M ... ( N  +  1 ) ) --> ( M ... ( N  +  1
) ) )
5917, 58syl 16 . . . . . . . . 9  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) ) )
60 fco 5556 . . . . . . . . 9  |-  ( ( G : ( M ... ( N  + 
1 ) ) --> C  /\  F : ( M ... ( N  +  1 ) ) --> ( M ... ( N  +  1 ) ) )  ->  ( G  o.  F ) : ( M ... ( N  +  1
) ) --> C )
611, 59, 60syl2anc 654 . . . . . . . 8  |-  ( ph  ->  ( G  o.  F
) : ( M ... ( N  + 
1 ) ) --> C )
62 fss 5555 . . . . . . . 8  |-  ( ( ( G  o.  F
) : ( M ... ( N  + 
1 ) ) --> C  /\  C  C_  S
)  ->  ( G  o.  F ) : ( M ... ( N  +  1 ) ) --> S )
6361, 16, 62syl2anc 654 . . . . . . 7  |-  ( ph  ->  ( G  o.  F
) : ( M ... ( N  + 
1 ) ) --> S )
6463ffvelrnda 5831 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  x )  e.  S
)
6564adantlr 707 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  x  e.  ( M ... ( N  +  1 ) ) )  ->  (
( G  o.  F
) `  x )  e.  S )
6650, 51, 55, 57, 65seqsplit 11822 . . . 4  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) ) )
67 elfzp12 11522 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )
6867biimpa 481 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( M ... N
) )  ->  ( K  =  M  \/  K  e.  ( ( M  +  1 ) ... N ) ) )
6915, 68sylan 468 . . . . 5  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) )
70 seqeq1 11792 . . . . . . . . . . 11  |-  ( K  =  M  ->  seq K (  .+  , 
( G  o.  F
) )  =  seq M (  .+  , 
( G  o.  F
) ) )
7170eqcomd 2438 . . . . . . . . . 10  |-  ( K  =  M  ->  seq M (  .+  , 
( G  o.  F
) )  =  seq K (  .+  , 
( G  o.  F
) ) )
7271fveq1d 5681 . . . . . . . . 9  |-  ( K  =  M  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  K
)  =  (  seq K (  .+  , 
( G  o.  F
) ) `  K
) )
73 f1ocnv 5641 . . . . . . . . . . . . 13  |-  ( F : ( M ... ( N  +  1
) ) -1-1-onto-> ( M ... ( N  +  1 ) )  ->  `' F : ( M ... ( N  +  1
) ) -1-1-onto-> ( M ... ( N  +  1 ) ) )
74 f1of 5629 . . . . . . . . . . . . 13  |-  ( `' F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) )  ->  `' F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) ) )
7517, 73, 743syl 20 . . . . . . . . . . . 12  |-  ( ph  ->  `' F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) ) )
76 peano2uz 10895 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
77 eluzfz2 11445 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( M ... ( N  +  1 ) ) )
7815, 76, 773syl 20 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  +  1 )  e.  ( M ... ( N  + 
1 ) ) )
7975, 78ffvelrnd 5832 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F `  ( N  +  1
) )  e.  ( M ... ( N  +  1 ) ) )
8019, 79syl5eqel 2517 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( M ... ( N  + 
1 ) ) )
81 elfzelz 11439 . . . . . . . . . 10  |-  ( K  e.  ( M ... ( N  +  1
) )  ->  K  e.  ZZ )
82 seq1 11802 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (  seq K (  .+  , 
( G  o.  F
) ) `  K
)  =  ( ( G  o.  F ) `
 K ) )
8380, 81, 823syl 20 . . . . . . . . 9  |-  ( ph  ->  (  seq K ( 
.+  ,  ( G  o.  F ) ) `
 K )  =  ( ( G  o.  F ) `  K
) )
8472, 83sylan9eqr 2487 . . . . . . . 8  |-  ( (
ph  /\  K  =  M )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  K
)  =  ( ( G  o.  F ) `
 K ) )
8584oveq1d 6095 . . . . . . 7  |-  ( (
ph  /\  K  =  M )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( ( ( G  o.  F ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) ) )
86 simpr 458 . . . . . . . . 9  |-  ( (
ph  /\  K  =  M )  ->  K  =  M )
87 eluzfz1 11444 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
8815, 87syl 16 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( M ... N ) )
8988adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  K  =  M )  ->  M  e.  ( M ... N
) )
9086, 89eqeltrd 2507 . . . . . . . 8  |-  ( (
ph  /\  K  =  M )  ->  K  e.  ( M ... N
) )
9113adantlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  (
x  e.  C  /\  y  e.  C )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
9216adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  C  C_  S
)
9361adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( G  o.  F ) : ( M ... ( N  +  1 ) ) --> C )
9480adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  K  e.  ( M ... ( N  +  1 ) ) )
95 peano2uz 10895 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
96 fzss1 11483 . . . . . . . . . . 11  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( K  +  1 ) ... ( N  + 
1 ) )  C_  ( M ... ( N  +  1 ) ) )
9757, 95, 963syl 20 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( ( K  +  1 ) ... ( N  + 
1 ) )  C_  ( M ... ( N  +  1 ) ) )
9850, 91, 51, 55, 92, 93, 94, 97seqf1olem2a 11827 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( (
( G  o.  F
) `  K )  .+  (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) )  =  ( (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) )  .+  (
( G  o.  F
) `  K )
) )
99 1zzd 10664 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  1  e.  ZZ )
100 elfzuz 11435 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( M ... ( N  +  1
) )  ->  K  e.  ( ZZ>= `  M )
)
101 fzss1 11483 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
10280, 100, 1013syl 20 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ... N
)  C_  ( M ... N ) )
103102sselda 3344 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  x  e.  ( M ... N ) )
10422ffvelrnda 5831 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( J `  x )  e.  ( M ... N ) )
105103, 104syldan 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( J `  x )  e.  ( M ... N ) )
106 fvres 5692 . . . . . . . . . . . . . . 15  |-  ( ( J `  x )  e.  ( M ... N )  ->  (
( G  |`  ( M ... N ) ) `
 ( J `  x ) )  =  ( G `  ( J `  x )
) )
107105, 106syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( ( G  |`  ( M ... N ) ) `  ( J `  x ) )  =  ( G `
 ( J `  x ) ) )
108 breq1 4283 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  x  ->  (
k  <  K  <->  x  <  K ) )
109 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  x  ->  k  =  x )
110 oveq1 6087 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  x  ->  (
k  +  1 )  =  ( x  + 
1 ) )
111108, 109, 110ifbieq12d 3804 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  x  ->  if ( k  <  K ,  k ,  ( k  +  1 ) )  =  if ( x  <  K ,  x ,  ( x  +  1 ) ) )
112111fveq2d 5683 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  ( F `  if (
k  <  K , 
k ,  ( k  +  1 ) ) )  =  ( F `
 if ( x  <  K ,  x ,  ( x  + 
1 ) ) ) )
113 fvex 5689 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 if ( x  <  K ,  x ,  ( x  + 
1 ) ) )  e.  _V
114112, 18, 113fvmpt 5762 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( M ... N )  ->  ( J `  x )  =  ( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) ) )
115103, 114syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( J `  x )  =  ( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) ) )
116 elfzle1 11440 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( K ... N )  ->  K  <_  x )
117116adantl 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  K  <_  x )
11880, 81syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  K  e.  ZZ )
119118zred 10734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  K  e.  RR )
120119adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  K  e.  RR )
121 elfzelz 11439 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( K ... N )  ->  x  e.  ZZ )
122121adantl 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  x  e.  ZZ )
123122zred 10734 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  x  e.  RR )
124120, 123lenltd 9507 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( K  <_  x  <->  -.  x  <  K ) )
125117, 124mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  -.  x  <  K )
126 iffalse 3787 . . . . . . . . . . . . . . . . . 18  |-  ( -.  x  <  K  ->  if ( x  <  K ,  x ,  ( x  +  1 ) )  =  ( x  + 
1 ) )
127126fveq2d 5683 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  <  K  -> 
( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) )  =  ( F `
 ( x  + 
1 ) ) )
128125, 127syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( F `  if ( x  < 
K ,  x ,  ( x  +  1 ) ) )  =  ( F `  (
x  +  1 ) ) )
129115, 128eqtrd 2465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( J `  x )  =  ( F `  ( x  +  1 ) ) )
130129fveq2d 5683 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( G `  ( J `  x
) )  =  ( G `  ( F `
 ( x  + 
1 ) ) ) )
131107, 130eqtrd 2465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( ( G  |`  ( M ... N ) ) `  ( J `  x ) )  =  ( G `
 ( F `  ( x  +  1
) ) ) )
132 fvco3 5756 . . . . . . . . . . . . . . 15  |-  ( ( J : ( M ... N ) --> ( M ... N )  /\  x  e.  ( M ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
13322, 132sylan 468 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
134103, 133syldan 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
135 fzp1elp1 11493 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M ... N )  ->  (
x  +  1 )  e.  ( M ... ( N  +  1
) ) )
136103, 135syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( x  +  1 )  e.  ( M ... ( N  +  1 ) ) )
137 fvco3 5756 . . . . . . . . . . . . . . 15  |-  ( ( F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) )  /\  ( x  + 
1 )  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  ( x  +  1 ) )  =  ( G `  ( F `
 ( x  + 
1 ) ) ) )
13859, 137sylan 468 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  +  1 )  e.  ( M ... ( N  +  1 ) ) )  ->  (
( G  o.  F
) `  ( x  +  1 ) )  =  ( G `  ( F `  ( x  +  1 ) ) ) )
139136, 138syldan 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( ( G  o.  F ) `  ( x  +  1 ) )  =  ( G `  ( F `
 ( x  + 
1 ) ) ) )
140131, 134, 1393eqtr4d 2475 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  o.  F
) `  ( x  +  1 ) ) )
141140adantlr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  x  e.  ( K ... N
) )  ->  (
( ( G  |`  ( M ... N ) )  o.  J ) `
 x )  =  ( ( G  o.  F ) `  (
x  +  1 ) ) )
14253, 99, 141seqshft2 11815 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) )
143 fvco3 5756 . . . . . . . . . . . . 13  |-  ( ( F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) )  /\  K  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  K )  =  ( G `  ( F `
 K ) ) )
14459, 80, 143syl2anc 654 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( G  o.  F ) `  K
)  =  ( G `
 ( F `  K ) ) )
14519fveq2i 5682 . . . . . . . . . . . . . 14  |-  ( F `
 K )  =  ( F `  ( `' F `  ( N  +  1 ) ) )
146 f1ocnvfv2 5971 . . . . . . . . . . . . . . 15  |-  ( ( F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) )  /\  ( N  +  1
)  e.  ( M ... ( N  + 
1 ) ) )  ->  ( F `  ( `' F `  ( N  +  1 ) ) )  =  ( N  +  1 ) )
14717, 78, 146syl2anc 654 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  ( `' F `  ( N  +  1 ) ) )  =  ( N  +  1 ) )
148145, 147syl5eq 2477 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  K
)  =  ( N  +  1 ) )
149148fveq2d 5683 . . . . . . . . . . . 12  |-  ( ph  ->  ( G `  ( F `  K )
)  =  ( G `
 ( N  + 
1 ) ) )
150144, 149eqtr2d 2466 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  ( N  +  1 ) )  =  ( ( G  o.  F ) `
 K ) )
151150adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( G `  ( N  +  1 ) )  =  ( ( G  o.  F
) `  K )
)
152142, 151oveq12d 6098 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) 
.+  ( G `  ( N  +  1
) ) )  =  ( (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) 
.+  ( ( G  o.  F ) `  K ) ) )
15398, 152eqtr4d 2468 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( (
( G  o.  F
) `  K )  .+  (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) )  =  ( (  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
15490, 153syldan 467 . . . . . . 7  |-  ( (
ph  /\  K  =  M )  ->  (
( ( G  o.  F ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq K ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
15586seqeq1d 11795 . . . . . . . . 9  |-  ( (
ph  /\  K  =  M )  ->  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) )  =  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) )
156155fveq1d 5681 . . . . . . . 8  |-  ( (
ph  /\  K  =  M )  ->  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) )
157156oveq1d 6095 . . . . . . 7  |-  ( (
ph  /\  K  =  M )  ->  (
(  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) )  =  ( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N )  .+  ( G `  ( N  +  1 ) ) ) )
15885, 154, 1573eqtrd 2469 . . . . . 6  |-  ( (
ph  /\  K  =  M )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
159 eluzel2 10853 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
16015, 159syl 16 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
161 elfzuz 11435 . . . . . . . . . . 11  |-  ( K  e.  ( ( M  +  1 ) ... N )  ->  K  e.  ( ZZ>= `  ( M  +  1 ) ) )
162 eluzp1m1 10871 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( K  -  1 )  e.  ( ZZ>= `  M ) )
163160, 161, 162syl2an 474 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( K  -  1 )  e.  ( ZZ>= `  M
) )
164 eluzelz 10857 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
16515, 164syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  ZZ )
166165zcnd 10735 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  CC )
167 ax-1cn 9327 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
168 pncan 9603 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
169166, 167, 168sylancl 655 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
170 peano2zm 10675 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
17180, 81, 1703syl 20 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( K  -  1 )  e.  ZZ )
172 elfzuz3 11436 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ( M ... ( N  +  1
) )  ->  ( N  +  1 )  e.  ( ZZ>= `  K
) )
17380, 172syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  K ) )
174118zcnd 10735 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  K  e.  CC )
175 npcan 9606 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  - 
1 )  +  1 )  =  K )
176174, 167, 175sylancl 655 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( K  - 
1 )  +  1 )  =  K )
177176fveq2d 5683 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ZZ>= `  ( ( K  -  1 )  +  1 ) )  =  ( ZZ>= `  K
) )
178173, 177eleqtrrd 2510 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  ( ( K  - 
1 )  +  1 ) ) )
179 eluzp1m1 10871 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  -  1 )  e.  ZZ  /\  ( N  +  1
)  e.  ( ZZ>= `  ( ( K  - 
1 )  +  1 ) ) )  -> 
( ( N  + 
1 )  -  1 )  e.  ( ZZ>= `  ( K  -  1
) ) )
180171, 178, 179syl2anc 654 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  e.  ( ZZ>= `  ( K  -  1
) ) )
181169, 180eqeltrrd 2508 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  ( ZZ>= `  ( K  -  1
) ) )
182 fzss2 11484 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  ( K  -  1 ) )  ->  ( M ... ( K  -  1 ) )  C_  ( M ... N ) )
183181, 182syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M ... ( K  -  1 ) )  C_  ( M ... N ) )
184183sselda 3344 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  x  e.  ( M ... N ) )
185184, 104syldan 467 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( J `  x )  e.  ( M ... N ) )
186185, 106syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( ( G  |`  ( M ... N ) ) `  ( J `  x ) )  =  ( G `
 ( J `  x ) ) )
187184, 114syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( J `  x )  =  ( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) ) )
188 elfzm11 11511 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  e.  ( M ... ( K  -  1 ) )  <-> 
( x  e.  ZZ  /\  M  <_  x  /\  x  <  K ) ) )
189160, 118, 188syl2anc 654 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  ( M ... ( K  -  1 ) )  <-> 
( x  e.  ZZ  /\  M  <_  x  /\  x  <  K ) ) )
190189biimpa 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( x  e.  ZZ  /\  M  <_  x  /\  x  <  K
) )
191190simp3d 995 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  x  <  K )
192 iftrue 3785 . . . . . . . . . . . . . . . . 17  |-  ( x  <  K  ->  if ( x  <  K ,  x ,  ( x  +  1 ) )  =  x )
193192fveq2d 5683 . . . . . . . . . . . . . . . 16  |-  ( x  <  K  ->  ( F `  if (
x  <  K ,  x ,  ( x  +  1 ) ) )  =  ( F `
 x ) )
194191, 193syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( F `  if ( x  < 
K ,  x ,  ( x  +  1 ) ) )  =  ( F `  x
) )
195187, 194eqtrd 2465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( J `  x )  =  ( F `  x ) )
196195fveq2d 5683 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( G `  ( J `  x
) )  =  ( G `  ( F `
 x ) ) )
197186, 196eqtr2d 2466 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( G `  ( F `  x
) )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
198 peano2uz 10895 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  ( K  -  1 ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  ( K  -  1 ) ) )
199 fzss2 11484 . . . . . . . . . . . . . . 15  |-  ( ( N  +  1 )  e.  ( ZZ>= `  ( K  -  1 ) )  ->  ( M ... ( K  -  1 ) )  C_  ( M ... ( N  + 
1 ) ) )
200181, 198, 1993syl 20 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ... ( K  -  1 ) )  C_  ( M ... ( N  +  1 ) ) )
201200sselda 3344 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  x  e.  ( M ... ( N  +  1 ) ) )
202 fvco3 5756 . . . . . . . . . . . . . 14  |-  ( ( F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) )  /\  x  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
20359, 202sylan 468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
204201, 203syldan 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
205184, 133syldan 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  =  ( ( G  |`  ( M ... N ) ) `
 ( J `  x ) ) )
206197, 204, 2053eqtr4d 2475 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( ( ( G  |`  ( M ... N ) )  o.  J ) `
 x ) )
207206adantlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  (
( G  o.  F
) `  x )  =  ( ( ( G  |`  ( M ... N ) )  o.  J ) `  x
) )
208163, 207seqfveq 11813 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( K  -  1 ) )  =  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) )
209 fzp1ss 11490 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
21015, 159, 2093syl 20 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
211210sselda 3344 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  K  e.  ( M ... N
) )
212211, 153syldan 467 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( ( G  o.  F ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq K ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
213208, 212oveq12d 6098 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  ( K  -  1
) )  .+  (
( ( G  o.  F ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) ) )  =  ( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 ( K  - 
1 ) )  .+  ( (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N )  .+  ( G `  ( N  +  1 ) ) ) ) )
214201, 64syldan 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( ( G  o.  F ) `  x )  e.  S
)
215214adantlr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  (
( G  o.  F
) `  x )  e.  S )
21612adantlr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
217163, 215, 216seqcl 11809 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( K  -  1 ) )  e.  S )
21861, 80ffvelrnd 5832 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( G  o.  F ) `  K
)  e.  C )
21916, 218sseldd 3345 . . . . . . . . . . 11  |-  ( ph  ->  ( ( G  o.  F ) `  K
)  e.  S )
220219adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( G  o.  F
) `  K )  e.  S )
22197sselda 3344 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  x  e.  ( ( K  + 
1 ) ... ( N  +  1 ) ) )  ->  x  e.  ( M ... ( N  +  1 ) ) )
222221, 65syldan 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  e.  ( M ... N
) )  /\  x  e.  ( ( K  + 
1 ) ... ( N  +  1 ) ) )  ->  (
( G  o.  F
) `  x )  e.  S )
22355, 222, 50seqcl 11809 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  e.  S )
224211, 223syldan 467 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  e.  S )
225217, 220, 2243jca 1161 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  ( K  -  1
) )  e.  S  /\  ( ( G  o.  F ) `  K
)  e.  S  /\  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) )  e.  S
) )
22614caovassg 6250 . . . . . . . . 9  |-  ( (
ph  /\  ( (  seq M (  .+  , 
( G  o.  F
) ) `  ( K  -  1 ) )  e.  S  /\  ( ( G  o.  F ) `  K
)  e.  S  /\  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) )  e.  S
) )  ->  (
( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( G  o.  F ) `  K ) )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) )  =  ( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( ( G  o.  F ) `
 K )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) ) ) )
227225, 226syldan 467 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( G  o.  F ) `  K ) )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) )  =  ( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( ( G  o.  F ) `
 K )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) ) ) )
228 fss 5555 . . . . . . . . . . . . . . . . 17  |-  ( ( G : ( M ... ( N  + 
1 ) ) --> C  /\  C  C_  S
)  ->  G :
( M ... ( N  +  1 ) ) --> S )
2291, 16, 228syl2anc 654 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : ( M ... ( N  + 
1 ) ) --> S )
230 fssres 5566 . . . . . . . . . . . . . . . 16  |-  ( ( G : ( M ... ( N  + 
1 ) ) --> S  /\  ( M ... N )  C_  ( M ... ( N  + 
1 ) ) )  ->  ( G  |`  ( M ... N ) ) : ( M ... N ) --> S )
231229, 4, 230sylancl 655 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G  |`  ( M ... N ) ) : ( M ... N ) --> S )
232 fco 5556 . . . . . . . . . . . . . . 15  |-  ( ( ( G  |`  ( M ... N ) ) : ( M ... N ) --> S  /\  J : ( M ... N ) --> ( M ... N ) )  ->  ( ( G  |`  ( M ... N
) )  o.  J
) : ( M ... N ) --> S )
233231, 22, 232syl2anc 654 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( G  |`  ( M ... N ) )  o.  J ) : ( M ... N ) --> S )
234233ffvelrnda 5831 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  e.  S
)
235184, 234syldan 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  e.  S
)
236235adantlr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  (
( ( G  |`  ( M ... N ) )  o.  J ) `
 x )  e.  S )
237163, 236, 216seqcl 11809 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) )  e.  S )
238 elfzuz3 11436 . . . . . . . . . . . 12  |-  ( K  e.  ( ( M  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  K )
)
239238adantl 463 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  N  e.  ( ZZ>= `  K )
)
240103, 234syldan 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( K ... N ) )  ->  ( (
( G  |`  ( M ... N ) )  o.  J ) `  x )  e.  S
)
241240adantlr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( K ... N
) )  ->  (
( ( G  |`  ( M ... N ) )  o.  J ) `
 x )  e.  S )
242239, 241, 216seqcl 11809 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  e.  S )
243229, 78ffvelrnd 5832 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  ( N  +  1 ) )  e.  S )
244243adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G `  ( N  +  1 ) )  e.  S )
245237, 242, 2443jca 1161 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  e.  S  /\  (  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  e.  S  /\  ( G `  ( N  +  1 ) )  e.  S ) )
24614caovassg 6250 . . . . . . . . 9  |-  ( (
ph  /\  ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) )  e.  S  /\  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  e.  S  /\  ( G `  ( N  +  1 ) )  e.  S ) )  ->  ( ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  .+  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) )  .+  ( G `
 ( N  + 
1 ) ) )  =  ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  ( (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) 
.+  ( G `  ( N  +  1
) ) ) ) )
247245, 246syldan 467 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 ( K  - 
1 ) )  .+  (  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
) )  .+  ( G `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  .+  ( (  seq K (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) ) )
248213, 227, 2473eqtr4d 2475 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( G  o.  F ) `  K ) )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) )  =  ( ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) ) 
.+  ( G `  ( N  +  1
) ) ) )
249 seqm1 11806 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  =  ( (  seq M ( 
.+  ,  ( G  o.  F ) ) `
 ( K  - 
1 ) )  .+  ( ( G  o.  F ) `  K
) ) )
250160, 161, 249syl2an 474 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  K
)  =  ( (  seq M (  .+  ,  ( G  o.  F ) ) `  ( K  -  1
) )  .+  (
( G  o.  F
) `  K )
) )
251250oveq1d 6095 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  ( G  o.  F )
) `  ( K  -  1 ) ) 
.+  ( ( G  o.  F ) `  K ) )  .+  (  seq ( K  + 
1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1
) ) ) )
25214adantlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  (
x  e.  S  /\  y  e.  S  /\  z  e.  S )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
253 elfzelz 11439 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( ( M  +  1 ) ... N )  ->  K  e.  ZZ )
254253adantl 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  K  e.  ZZ )
255254zcnd 10735 . . . . . . . . . . . . 13  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  K  e.  CC )
256255, 167, 175sylancl 655 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( K  -  1 )  +  1 )  =  K )
257256fveq2d 5683 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( ZZ>=
`  ( ( K  -  1 )  +  1 ) )  =  ( ZZ>= `  K )
)
258239, 257eleqtrrd 2510 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  N  e.  ( ZZ>= `  ( ( K  -  1 )  +  1 ) ) )
259234adantlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  /\  x  e.  ( M ... N
) )  ->  (
( ( G  |`  ( M ... N ) )  o.  J ) `
 x )  e.  S )
260216, 252, 258, 163, 259seqsplit 11822 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  (  seq (
( K  -  1 )  +  1 ) (  .+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) ) )
261256seqeq1d 11795 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  seq ( ( K  - 
1 )  +  1 ) (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) )  =  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) )
262261fveq1d 5681 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq ( ( K  - 
1 )  +  1 ) (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) )
263262oveq2d 6096 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  .+  (  seq ( ( K  - 
1 )  +  1 ) (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  ( K  -  1 ) )  .+  (  seq K (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) ) )
264260, 263eqtrd 2465 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  =  ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) ) )
265264oveq1d 6095 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) )  =  ( ( (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  ( K  -  1 ) ) 
.+  (  seq K
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N ) ) 
.+  ( G `  ( N  +  1
) ) ) )
266248, 251, 2653eqtr4d 2475 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  K )  .+  (  seq ( K  +  1 ) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
267158, 266jaodan 776 . . . . 5  |-  ( (
ph  /\  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) )  -> 
( (  seq M
(  .+  ,  ( G  o.  F )
) `  K )  .+  (  seq ( K  +  1 ) (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
26869, 267syldan 467 . . . 4  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  ( (  seq M (  .+  , 
( G  o.  F
) ) `  K
)  .+  (  seq ( K  +  1
) (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  ( ( G  |`  ( M ... N ) )  o.  J ) ) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
26966, 268eqtrd 2465 . . 3  |-  ( (
ph  /\  K  e.  ( M ... N ) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
27015adantr 462 . . . . 5  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  N  e.  ( ZZ>= `  M )
)
271 seqp1 11804 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( G  o.  F ) ) `  N )  .+  (
( G  o.  F
) `  ( N  +  1 ) ) ) )
272270, 271syl 16 . . . 4  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( G  o.  F ) ) `  N )  .+  (
( G  o.  F
) `  ( N  +  1 ) ) ) )
273114adantl 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( J `  x
)  =  ( F `
 if ( x  <  K ,  x ,  ( x  + 
1 ) ) ) )
274 elfzelz 11439 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
275274zred 10734 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M ... N )  ->  x  e.  RR )
276275adantl 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  e.  RR )
277165zred 10734 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  RR )
278277adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  N  e.  RR )
279 peano2re 9529 . . . . . . . . . . . . . . 15  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
280278, 279syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( N  +  1 )  e.  RR )
281 elfzle2 11441 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M ... N )  ->  x  <_  N )
282281adantl 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  <_  N )
283278ltp1d 10250 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  N  <  ( N  +  1 ) )
284276, 278, 280, 282, 283lelttrd 9516 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  x  <  ( N  +  1 ) )
285284adantlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  x  <  ( N  + 
1 ) )
286 simplr 747 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  K  =  ( N  +  1 ) )
287285, 286breqtrrd 4306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  x  <  K )
288287, 193syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( F `  if ( x  <  K ,  x ,  ( x  +  1 ) ) )  =  ( F `
 x ) )
289273, 288eqtrd 2465 . . . . . . . . 9  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( J `  x
)  =  ( F `
 x ) )
290289fveq2d 5683 . . . . . . . 8  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( G  |`  ( M ... N ) ) `  ( J `
 x ) )  =  ( ( G  |`  ( M ... N
) ) `  ( F `  x )
) )
291275adantl 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  x  e.  RR )
292291, 287gtned 9496 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  K  =/=  x )
29359ad2antrr 718 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... ( N  +  1
) ) --> ( M ... ( N  + 
1 ) ) )
294 fzelp1 11491 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( M ... N )  ->  x  e.  ( M ... ( N  +  1 ) ) )
295294adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... ( N  +  1 ) ) )
296293, 295ffvelrnd 5832 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  ( M ... ( N  + 
1 ) ) )
29715ad2antrr 718 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  M ) )
298 elfzp1 11489 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( F `  x )  e.  ( M ... ( N  +  1 ) )  <->  ( ( F `
 x )  e.  ( M ... N
)  \/  ( F `
 x )  =  ( N  +  1 ) ) ) )
299297, 298syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( F `  x )  e.  ( M ... ( N  +  1 ) )  <-> 
( ( F `  x )  e.  ( M ... N )  \/  ( F `  x )  =  ( N  +  1 ) ) ) )
300296, 299mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( F `  x )  e.  ( M ... N )  \/  ( F `  x )  =  ( N  +  1 ) ) )
301300ord 377 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( -.  ( F `
 x )  e.  ( M ... N
)  ->  ( F `  x )  =  ( N  +  1 ) ) )
30217ad2antrr 718 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... ( N  +  1
) ) -1-1-onto-> ( M ... ( N  +  1 ) ) )
303 f1ocnvfv 5972 . . . . . . . . . . . . . 14  |-  ( ( F : ( M ... ( N  + 
1 ) ) -1-1-onto-> ( M ... ( N  + 
1 ) )  /\  x  e.  ( M ... ( N  +  1 ) ) )  -> 
( ( F `  x )  =  ( N  +  1 )  ->  ( `' F `  ( N  +  1 ) )  =  x ) )
304302, 295, 303syl2anc 654 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( F `  x )  =  ( N  +  1 )  ->  ( `' F `  ( N  +  1 ) )  =  x ) )
30519eqeq1i 2440 . . . . . . . . . . . . 13  |-  ( K  =  x  <->  ( `' F `  ( N  +  1 ) )  =  x )
306304, 305syl6ibr 227 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( F `  x )  =  ( N  +  1 )  ->  K  =  x ) )
307301, 306syld 44 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( -.  ( F `
 x )  e.  ( M ... N
)  ->  K  =  x ) )
308307necon1ad 2668 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( K  =/=  x  ->  ( F `  x
)  e.  ( M ... N ) ) )
309292, 308mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  ( M ... N ) )
310 fvres 5692 . . . . . . . . 9  |-  ( ( F `  x )  e.  ( M ... N )  ->  (
( G  |`  ( M ... N ) ) `
 ( F `  x ) )  =  ( G `  ( F `  x )
) )
311309, 310syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( G  |`  ( M ... N ) ) `  ( F `
 x ) )  =  ( G `  ( F `  x ) ) )
312290, 311eqtr2d 2466 . . . . . . 7  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( G `  ( F `  x )
)  =  ( ( G  |`  ( M ... N ) ) `  ( J `  x ) ) )
31359, 294, 202syl2an 474 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
314313adantlr 707 . . . . . . 7  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
315133adantlr 707 . . . . . . 7  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( ( G  |`  ( M ... N
) )  o.  J
) `  x )  =  ( ( G  |`  ( M ... N
) ) `  ( J `  x )
) )
316312, 314, 3153eqtr4d 2475 . . . . . 6  |-  ( ( ( ph  /\  K  =  ( N  + 
1 ) )  /\  x  e.  ( M ... N ) )  -> 
( ( G  o.  F ) `  x
)  =  ( ( ( G  |`  ( M ... N ) )  o.  J ) `  x ) )
317270, 316seqfveq 11813 . . . . 5  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  N
)  =  (  seq M (  .+  , 
( ( G  |`  ( M ... N ) )  o.  J ) ) `  N ) )
318 fvco3 5756 . . . . . . . 8  |-  ( ( F : ( M ... ( N  + 
1 ) ) --> ( M ... ( N  +  1 ) )  /\  ( N  + 
1 )  e.  ( M ... ( N  +  1 ) ) )  ->  ( ( G  o.  F ) `  ( N  +  1 ) )  =  ( G `  ( F `
 ( N  + 
1 ) ) ) )
31959, 78, 318syl2anc 654 . . . . . . 7  |-  ( ph  ->  ( ( G  o.  F ) `  ( N  +  1 ) )  =  ( G `
 ( F `  ( N  +  1
) ) ) )
320319adantr 462 . . . . . 6  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (
( G  o.  F
) `  ( N  +  1 ) )  =  ( G `  ( F `  ( N  +  1 ) ) ) )
321 simpr 458 . . . . . . . . . 10  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  K  =  ( N  + 
1 ) )
32219, 321syl5eqr 2479 . . . . . . . . 9  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( `' F `  ( N  +  1 ) )  =  ( N  + 
1 ) )
323322fveq2d 5683 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( F `  ( `' F `  ( N  +  1 ) ) )  =  ( F `
 ( N  + 
1 ) ) )
324147adantr 462 . . . . . . . 8  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( F `  ( `' F `  ( N  +  1 ) ) )  =  ( N  +  1 ) )
325323, 324eqtr3d 2467 . . . . . . 7  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( F `  ( N  +  1 ) )  =  ( N  + 
1 ) )
326325fveq2d 5683 . . . . . 6  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  ( G `  ( F `  ( N  +  1 ) ) )  =  ( G `  ( N  +  1 ) ) )
327320, 326eqtrd 2465 . . . . 5  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (
( G  o.  F
) `  ( N  +  1 ) )  =  ( G `  ( N  +  1
) ) )
328317, 327oveq12d 6098 . . . 4  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (
(  seq M (  .+  ,  ( G  o.  F ) ) `  N )  .+  (
( G  o.  F
) `  ( N  +  1 ) ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
329272, 328eqtrd 2465 . . 3  |-  ( (
ph  /\  K  =  ( N  +  1
) )  ->  (  seq M (  .+  , 
( G  o.  F
) ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  ( ( G  |`  ( M ... N
) )  o.  J
) ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
330 elfzp1 11489 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... ( N  +  1 ) )  <->  ( K  e.  ( M ... N
)  \/  K  =  ( N  +  1 ) ) ) )
33115, 330syl 16 . . . 4  |-  ( ph  ->  ( K  e.  ( M ... ( N  +  1 ) )  <-> 
( K  e.  ( M ... N )  \/  K  =  ( N  +  1 ) ) ) )
33280, 331mpbid 210 . . 3  |-  ( ph  ->  ( K  e.  ( M ... N )  \/  K  =  ( N  +  1 ) ) )
333269, 329, 332mpjaodan 777 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( G  o.  F ) ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  (
( G  |`  ( M ... N ) )  o.  J ) ) `
 N )  .+  ( G `  ( N  +  1 ) ) ) )
334 seqp1 11804 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  G ) `  ( N  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  N
)  .+  ( G `  ( N  +  1 ) ) ) )
33515, 334syl 16 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  G
) `  N )  .+  ( G `  ( N  +  1 ) ) ) )
33649, 333, 3353eqtr4d 2475 1  |-  ( ph  ->  (  seq M ( 
.+  ,  ( G  o.  F ) ) `
 ( N  + 
1 ) )  =  (  seq M ( 
.+  ,  G ) `
 ( N  + 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 958   A.wal 1360    = wceq 1362    e. wcel 1755    =/= wne 2596   _Vcvv 2962    C_ wss 3316   ifcif 3779   class class class wbr 4280    e. cmpt 4338   `'ccnv 4826    |` cres 4829    o. ccom 4831    Fn wfn 5401   -->wf 5402   -1-1-onto->wf1o 5405   ` cfv 5406  (class class class)co 6080   Fincfn 7298   CCcc 9267   RRcr 9268   1c1 9270    + caddc 9272    < clt 9405    <_ cle 9406    - cmin 9582   ZZcz 10633   ZZ>=cuz 10848   ...cfz 11423    seqcseq 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-nn 10310  df-n0 10567  df-z 10634  df-uz 10849  df-fz 11424  df-fzo 11532  df-seq 11790
This theorem is referenced by:  seqf1o  11830
  Copyright terms: Public domain W3C validator