MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf Structured version   Unicode version

Theorem seqf 12130
Description: Range of the recursive sequence builder (special case of seqf2 12128). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1  |-  Z  =  ( ZZ>= `  M )
seqf.2  |-  ( ph  ->  M  e.  ZZ )
seqf.3  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
seqf.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seqf  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Distinct variable groups:    x, y,  .+    x, F, y    x, M, y    ph, x, y   
x, S, y    x, Z
Allowed substitution hint:    Z( y)

Proof of Theorem seqf
StepHypRef Expression
1 seqf.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2 uzid 11120 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 16 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 seqf.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
53, 4syl6eleqr 2556 . . 3  |-  ( ph  ->  M  e.  Z )
6 seqf.3 . . . 4  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
76ralrimiva 2871 . . 3  |-  ( ph  ->  A. x  e.  Z  ( F `  x )  e.  S )
8 fveq2 5872 . . . . 5  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
98eleq1d 2526 . . . 4  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
109rspcv 3206 . . 3  |-  ( M  e.  Z  ->  ( A. x  e.  Z  ( F `  x )  e.  S  ->  ( F `  M )  e.  S ) )
115, 7, 10sylc 60 . 2  |-  ( ph  ->  ( F `  M
)  e.  S )
12 seqf.4 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
13 peano2uzr 11161 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  x  e.  ( ZZ>= `  M ) )
141, 13sylan 471 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  ( ZZ>= `  M )
)
1514, 4syl6eleqr 2556 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  Z )
1615, 6syldan 470 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  S
)
1711, 12, 4, 1, 16seqf2 12128 1  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   -->wf 5590   ` cfv 5594  (class class class)co 6296   1c1 9510    + caddc 9512   ZZcz 10885   ZZ>=cuz 11106    seqcseq 12109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-seq 12110
This theorem is referenced by:  serf  12137  serfre  12138  bcval5  12398  prodf  13707  iprodrecl  13806  algrf  14213  pcmptcl  14421  ovolsf  22009  dvnff  22451  elqaalem2  22841  elqaalem3  22842  opsqrlem4  27188  sseqf  28506  regamcl  28778
  Copyright terms: Public domain W3C validator