Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq2d Unicode version

Theorem seqeq2d 11285
 Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1
Assertion
Ref Expression
seqeq2d

Proof of Theorem seqeq2d
StepHypRef Expression
1 seqeqd.1 . 2
2 seqeq2 11282 . 2
31, 2syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1649   cseq 11278 This theorem is referenced by:  seqeq123d  11287  sadfval  12919  smufval  12944  gsumvalx  14729  gsumpropd  14731  gsumress  14732  mulgfval  14846  submmulg  14880  subgmulg  14913  dvnfval  19761 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-cnv 4845  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-seq 11279
 Copyright terms: Public domain W3C validator