MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1 Structured version   Unicode version

Theorem seqeq1 12092
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1  |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )

Proof of Theorem seqeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5848 . . . . 5  |-  ( M  =  N  ->  ( F `  M )  =  ( F `  N ) )
2 opeq12 4205 . . . . 5  |-  ( ( M  =  N  /\  ( F `  M )  =  ( F `  N ) )  ->  <. M ,  ( F `
 M ) >.  =  <. N ,  ( F `  N )
>. )
31, 2mpdan 666 . . . 4  |-  ( M  =  N  ->  <. M , 
( F `  M
) >.  =  <. N , 
( F `  N
) >. )
4 rdgeq2 7070 . . . 4  |-  ( <. M ,  ( F `  M ) >.  =  <. N ,  ( F `  N ) >.  ->  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. N , 
( F `  N
) >. ) )
53, 4syl 16 . . 3  |-  ( M  =  N  ->  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. N , 
( F `  N
) >. ) )
65imaeq1d 5324 . 2  |-  ( M  =  N  ->  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. N , 
( F `  N
) >. ) " om ) )
7 df-seq 12090 . 2  |-  seq M
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
8 df-seq 12090 . 2  |-  seq N
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. N , 
( F `  N
) >. ) " om )
96, 7, 83eqtr4g 2520 1  |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398   _Vcvv 3106   <.cop 4022   "cima 4991   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   omcom 6673   reccrdg 7067   1c1 9482    + caddc 9484    seqcseq 12089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-cnv 4996  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fv 5578  df-recs 7034  df-rdg 7068  df-seq 12090
This theorem is referenced by:  seqeq1d  12095  seqfn  12101  seq1  12102  seqp1  12104  seqf1olem2  12129  seqid  12134  seqz  12137  iserex  13561  summolem2  13620  summo  13621  zsum  13622  isumsplit  13734  ntrivcvg  13788  ntrivcvgn0  13789  ntrivcvgtail  13791  ntrivcvgmullem  13792  prodmolem2  13824  prodmo  13825  zprod  13826  fprodntriv  13831  ege2le3  13907  gsumval2a  16105  leibpi  23470  dvradcnv2  31493  binomcxplemnotnn0  31502  stirlinglem12  32106
  Copyright terms: Public domain W3C validator