MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1 Structured version   Unicode version

Theorem seqeq1 11821
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1  |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )

Proof of Theorem seqeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5703 . . . . 5  |-  ( M  =  N  ->  ( F `  M )  =  ( F `  N ) )
2 opeq12 4073 . . . . 5  |-  ( ( M  =  N  /\  ( F `  M )  =  ( F `  N ) )  ->  <. M ,  ( F `
 M ) >.  =  <. N ,  ( F `  N )
>. )
31, 2mpdan 668 . . . 4  |-  ( M  =  N  ->  <. M , 
( F `  M
) >.  =  <. N , 
( F `  N
) >. )
4 rdgeq2 6880 . . . 4  |-  ( <. M ,  ( F `  M ) >.  =  <. N ,  ( F `  N ) >.  ->  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. N , 
( F `  N
) >. ) )
53, 4syl 16 . . 3  |-  ( M  =  N  ->  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. N , 
( F `  N
) >. ) )
65imaeq1d 5180 . 2  |-  ( M  =  N  ->  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. N , 
( F `  N
) >. ) " om ) )
7 df-seq 11819 . 2  |-  seq M
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
8 df-seq 11819 . 2  |-  seq N
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. N , 
( F `  N
) >. ) " om )
96, 7, 83eqtr4g 2500 1  |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369   _Vcvv 2984   <.cop 3895   "cima 4855   ` cfv 5430  (class class class)co 6103    e. cmpt2 6105   omcom 6488   reccrdg 6877   1c1 9295    + caddc 9297    seqcseq 11818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-mpt 4364  df-cnv 4860  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fv 5438  df-recs 6844  df-rdg 6878  df-seq 11819
This theorem is referenced by:  seqeq1d  11824  seqfn  11830  seq1  11831  seqp1  11833  seqf1olem2  11858  seqid  11863  seqz  11866  iserex  13146  summolem2  13205  summo  13206  zsum  13207  isumsplit  13315  ege2le3  13387  gsumval2a  15524  leibpi  22349  ntrivcvg  27424  ntrivcvgn0  27425  ntrivcvgtail  27427  ntrivcvgmullem  27428  prodmolem2  27460  prodmo  27461  zprod  27462  fprodntriv  27467  stirlinglem12  29892
  Copyright terms: Public domain W3C validator