MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcoll2 Structured version   Unicode version

Theorem seqcoll2 12203
Description: The function  F contains a sparse set of non-zero values to be summed. The function  G is an order isomorphism from the set of non-zero values of  F to a 1-based finite sequence, and  H collects these non-zero values together. Under these conditions, the sum over the values in  H yields the same result as the sum over the original set  F. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
seqcoll2.1  |-  ( (
ph  /\  k  e.  S )  ->  ( Z  .+  k )  =  k )
seqcoll2.1b  |-  ( (
ph  /\  k  e.  S )  ->  (
k  .+  Z )  =  k )
seqcoll2.c  |-  ( (
ph  /\  ( k  e.  S  /\  n  e.  S ) )  -> 
( k  .+  n
)  e.  S )
seqcoll2.a  |-  ( ph  ->  Z  e.  S )
seqcoll2.2  |-  ( ph  ->  G  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) )
seqcoll2.3  |-  ( ph  ->  A  =/=  (/) )
seqcoll2.5  |-  ( ph  ->  A  C_  ( M ... N ) )
seqcoll2.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
seqcoll2.7  |-  ( (
ph  /\  k  e.  ( ( M ... N )  \  A
) )  ->  ( F `  k )  =  Z )
seqcoll2.8  |-  ( (
ph  /\  n  e.  ( 1 ... ( # `
 A ) ) )  ->  ( H `  n )  =  ( F `  ( G `
 n ) ) )
Assertion
Ref Expression
seqcoll2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq 1 ( 
.+  ,  H ) `
 ( # `  A
) ) )
Distinct variable groups:    k, n, A    k, F, n    k, G, n    n, H    k, M, n    ph, k, n   
k, N    .+ , k, n    S, k, n    k, Z
Allowed substitution hints:    H( k)    N( n)    Z( n)

Proof of Theorem seqcoll2
StepHypRef Expression
1 seqcoll2.1b . . 3  |-  ( (
ph  /\  k  e.  S )  ->  (
k  .+  Z )  =  k )
2 fzssuz 11488 . . . 4  |-  ( M ... N )  C_  ( ZZ>= `  M )
3 seqcoll2.5 . . . . 5  |-  ( ph  ->  A  C_  ( M ... N ) )
4 seqcoll2.2 . . . . . . . 8  |-  ( ph  ->  G  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) )
5 isof1o 6005 . . . . . . . 8  |-  ( G 
Isom  <  ,  <  (
( 1 ... ( # `
 A ) ) ,  A )  ->  G : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
64, 5syl 16 . . . . . . 7  |-  ( ph  ->  G : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
7 f1of 5631 . . . . . . 7  |-  ( G : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  G :
( 1 ... ( # `
 A ) ) --> A )
86, 7syl 16 . . . . . 6  |-  ( ph  ->  G : ( 1 ... ( # `  A
) ) --> A )
9 seqcoll2.3 . . . . . . . . . 10  |-  ( ph  ->  A  =/=  (/) )
10 fzfi 11780 . . . . . . . . . . . . 13  |-  ( M ... N )  e. 
Fin
11 ssfi 7523 . . . . . . . . . . . . 13  |-  ( ( ( M ... N
)  e.  Fin  /\  A  C_  ( M ... N ) )  ->  A  e.  Fin )
1210, 3, 11sylancr 658 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  Fin )
13 hasheq0 12117 . . . . . . . . . . . 12  |-  ( A  e.  Fin  ->  (
( # `  A )  =  0  <->  A  =  (/) ) )
1412, 13syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( # `  A
)  =  0  <->  A  =  (/) ) )
1514necon3bbid 2634 . . . . . . . . . 10  |-  ( ph  ->  ( -.  ( # `  A )  =  0  <-> 
A  =/=  (/) ) )
169, 15mpbird 232 . . . . . . . . 9  |-  ( ph  ->  -.  ( # `  A
)  =  0 )
17 hashcl 12112 . . . . . . . . . . . 12  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
1812, 17syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  A
)  e.  NN0 )
19 elnn0 10571 . . . . . . . . . . 11  |-  ( (
# `  A )  e.  NN0  <->  ( ( # `  A )  e.  NN  \/  ( # `  A
)  =  0 ) )
2018, 19sylib 196 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  A
)  e.  NN  \/  ( # `  A )  =  0 ) )
2120ord 377 . . . . . . . . 9  |-  ( ph  ->  ( -.  ( # `  A )  e.  NN  ->  ( # `  A
)  =  0 ) )
2216, 21mt3d 125 . . . . . . . 8  |-  ( ph  ->  ( # `  A
)  e.  NN )
23 nnuz 10886 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23syl6eleq 2525 . . . . . . 7  |-  ( ph  ->  ( # `  A
)  e.  ( ZZ>= ` 
1 ) )
25 eluzfz2 11448 . . . . . . 7  |-  ( (
# `  A )  e.  ( ZZ>= `  1 )  ->  ( # `  A
)  e.  ( 1 ... ( # `  A
) ) )
2624, 25syl 16 . . . . . 6  |-  ( ph  ->  ( # `  A
)  e.  ( 1 ... ( # `  A
) ) )
278, 26ffvelrnd 5834 . . . . 5  |-  ( ph  ->  ( G `  ( # `
 A ) )  e.  A )
283, 27sseldd 3347 . . . 4  |-  ( ph  ->  ( G `  ( # `
 A ) )  e.  ( M ... N ) )
292, 28sseldi 3344 . . 3  |-  ( ph  ->  ( G `  ( # `
 A ) )  e.  ( ZZ>= `  M
) )
30 elfzuz3 11439 . . . 4  |-  ( ( G `  ( # `  A ) )  e.  ( M ... N
)  ->  N  e.  ( ZZ>= `  ( G `  ( # `  A
) ) ) )
3128, 30syl 16 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( G `  ( # `  A ) ) ) )
32 fzss2 11487 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  ( G `  ( # `  A
) ) )  -> 
( M ... ( G `  ( # `  A
) ) )  C_  ( M ... N ) )
3331, 32syl 16 . . . . . 6  |-  ( ph  ->  ( M ... ( G `  ( # `  A
) ) )  C_  ( M ... N ) )
3433sselda 3346 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... ( G `
 ( # `  A
) ) ) )  ->  k  e.  ( M ... N ) )
35 seqcoll2.6 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
3634, 35syldan 467 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... ( G `
 ( # `  A
) ) ) )  ->  ( F `  k )  e.  S
)
37 seqcoll2.c . . . 4  |-  ( (
ph  /\  ( k  e.  S  /\  n  e.  S ) )  -> 
( k  .+  n
)  e.  S )
3829, 36, 37seqcl 11812 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( G `  ( # `  A ) ) )  e.  S
)
39 peano2uz 10898 . . . . . . . 8  |-  ( ( G `  ( # `  A ) )  e.  ( ZZ>= `  M )  ->  ( ( G `  ( # `  A ) )  +  1 )  e.  ( ZZ>= `  M
) )
4029, 39syl 16 . . . . . . 7  |-  ( ph  ->  ( ( G `  ( # `  A ) )  +  1 )  e.  ( ZZ>= `  M
) )
41 fzss1 11486 . . . . . . 7  |-  ( ( ( G `  ( # `
 A ) )  +  1 )  e.  ( ZZ>= `  M )  ->  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) 
C_  ( M ... N ) )
4240, 41syl 16 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) 
C_  ( M ... N ) )
4342sselda 3346 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  k  e.  ( M ... N ) )
44 eluzelre 10861 . . . . . . . . 9  |-  ( ( G `  ( # `  A ) )  e.  ( ZZ>= `  M )  ->  ( G `  ( # `
 A ) )  e.  RR )
4529, 44syl 16 . . . . . . . 8  |-  ( ph  ->  ( G `  ( # `
 A ) )  e.  RR )
4645adantr 462 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( G `  ( # `  A
) )  e.  RR )
47 peano2re 9532 . . . . . . . 8  |-  ( ( G `  ( # `  A ) )  e.  RR  ->  ( ( G `  ( # `  A
) )  +  1 )  e.  RR )
4846, 47syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( ( G `  ( # `  A
) )  +  1 )  e.  RR )
49 elfzelz 11442 . . . . . . . . 9  |-  ( k  e.  ( ( ( G `  ( # `  A ) )  +  1 ) ... N
)  ->  k  e.  ZZ )
5049zred 10737 . . . . . . . 8  |-  ( k  e.  ( ( ( G `  ( # `  A ) )  +  1 ) ... N
)  ->  k  e.  RR )
5150adantl 463 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  k  e.  RR )
5246ltp1d 10253 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( G `  ( # `  A
) )  <  (
( G `  ( # `
 A ) )  +  1 ) )
53 elfzle1 11443 . . . . . . . 8  |-  ( k  e.  ( ( ( G `  ( # `  A ) )  +  1 ) ... N
)  ->  ( ( G `  ( # `  A
) )  +  1 )  <_  k )
5453adantl 463 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( ( G `  ( # `  A
) )  +  1 )  <_  k )
5546, 48, 51, 52, 54ltletrd 9521 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( G `  ( # `  A
) )  <  k
)
566adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  G : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
57 f1ocnv 5643 . . . . . . . . . . . . 13  |-  ( G : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  `' G : A -1-1-onto-> ( 1 ... ( # `
 A ) ) )
5856, 57syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  `' G : A -1-1-onto-> ( 1 ... ( # `
 A ) ) )
59 f1of 5631 . . . . . . . . . . . 12  |-  ( `' G : A -1-1-onto-> ( 1 ... ( # `  A
) )  ->  `' G : A --> ( 1 ... ( # `  A
) ) )
6058, 59syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  `' G : A --> ( 1 ... ( # `  A
) ) )
61 simprr 751 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  k  e.  A )
6260, 61ffvelrnd 5834 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( `' G `  k )  e.  ( 1 ... ( # `  A
) ) )
63 elfzle2 11444 . . . . . . . . . 10  |-  ( ( `' G `  k )  e.  ( 1 ... ( # `  A
) )  ->  ( `' G `  k )  <_  ( # `  A
) )
6462, 63syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( `' G `  k )  <_  ( # `  A
) )
65 elfzelz 11442 . . . . . . . . . . . 12  |-  ( ( `' G `  k )  e.  ( 1 ... ( # `  A
) )  ->  ( `' G `  k )  e.  ZZ )
6662, 65syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( `' G `  k )  e.  ZZ )
6766zred 10737 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( `' G `  k )  e.  RR )
6818adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( # `
 A )  e. 
NN0 )
6968nn0red 10627 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( # `
 A )  e.  RR )
7067, 69lenltd 9510 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  (
( `' G `  k )  <_  ( # `
 A )  <->  -.  ( # `
 A )  < 
( `' G `  k ) ) )
7164, 70mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  -.  ( # `  A )  <  ( `' G `  k ) )
724adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  G  Isom  <  ,  <  (
( 1 ... ( # `
 A ) ) ,  A ) )
7326adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( # `
 A )  e.  ( 1 ... ( # `
 A ) ) )
74 isorel 6006 . . . . . . . . . 10  |-  ( ( G  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A )  /\  ( ( # `  A
)  e.  ( 1 ... ( # `  A
) )  /\  ( `' G `  k )  e.  ( 1 ... ( # `  A
) ) ) )  ->  ( ( # `  A )  <  ( `' G `  k )  <-> 
( G `  ( # `
 A ) )  <  ( G `  ( `' G `  k ) ) ) )
7572, 73, 62, 74syl12anc 1211 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  (
( # `  A )  <  ( `' G `  k )  <->  ( G `  ( # `  A
) )  <  ( G `  ( `' G `  k )
) ) )
76 f1ocnvfv2 5973 . . . . . . . . . . 11  |-  ( ( G : ( 1 ... ( # `  A
) ) -1-1-onto-> A  /\  k  e.  A )  ->  ( G `  ( `' G `  k )
)  =  k )
7756, 61, 76syl2anc 656 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  ( G `  ( `' G `  k )
)  =  k )
7877breq2d 4294 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  (
( G `  ( # `
 A ) )  <  ( G `  ( `' G `  k ) )  <->  ( G `  ( # `  A ) )  <  k ) )
7975, 78bitrd 253 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  (
( # `  A )  <  ( `' G `  k )  <->  ( G `  ( # `  A
) )  <  k
) )
8071, 79mtbid 300 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N )  /\  k  e.  A
) )  ->  -.  ( G `  ( # `  A ) )  < 
k )
8180expr 612 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( k  e.  A  ->  -.  ( G `  ( # `  A
) )  <  k
) )
8255, 81mt2d 117 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  -.  k  e.  A )
8343, 82eldifd 3329 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  k  e.  ( ( M ... N )  \  A
) )
84 seqcoll2.7 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M ... N )  \  A
) )  ->  ( F `  k )  =  Z )
8583, 84syldan 467 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( G `
 ( # `  A
) )  +  1 ) ... N ) )  ->  ( F `  k )  =  Z )
861, 29, 31, 38, 85seqid2 11838 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( G `  ( # `  A ) ) )  =  (  seq M (  .+  ,  F ) `  N
) )
87 seqcoll2.1 . . 3  |-  ( (
ph  /\  k  e.  S )  ->  ( Z  .+  k )  =  k )
88 seqcoll2.a . . 3  |-  ( ph  ->  Z  e.  S )
893, 2syl6ss 3358 . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
9033ssdifd 3482 . . . . 5  |-  ( ph  ->  ( ( M ... ( G `  ( # `  A ) ) ) 
\  A )  C_  ( ( M ... N )  \  A
) )
9190sselda 3346 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M ... ( G `  ( # `  A ) ) ) 
\  A ) )  ->  k  e.  ( ( M ... N
)  \  A )
)
9291, 84syldan 467 . . 3  |-  ( (
ph  /\  k  e.  ( ( M ... ( G `  ( # `  A ) ) ) 
\  A ) )  ->  ( F `  k )  =  Z )
93 seqcoll2.8 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( # `
 A ) ) )  ->  ( H `  n )  =  ( F `  ( G `
 n ) ) )
9487, 1, 37, 88, 4, 26, 89, 36, 92, 93seqcoll 12202 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( G `  ( # `  A ) ) )  =  (  seq 1 (  .+  ,  H ) `  ( # `
 A ) ) )
9586, 94eqtr3d 2469 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq 1 ( 
.+  ,  H ) `
 ( # `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1757    =/= wne 2598    \ cdif 3315    C_ wss 3318   (/)c0 3627   class class class wbr 4282   `'ccnv 4828   -->wf 5404   -1-1-onto->wf1o 5407   ` cfv 5408    Isom wiso 5409  (class class class)co 6082   Fincfn 7300   RRcr 9271   0cc0 9272   1c1 9273    + caddc 9275    < clt 9408    <_ cle 9409   NNcn 10312   NN0cn0 10569   ZZcz 10636   ZZ>=cuz 10851   ...cfz 11426    seqcseq 11792   #chash 12089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-om 6468  df-1st 6568  df-2nd 6569  df-recs 6820  df-rdg 6854  df-1o 6910  df-er 7091  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-card 8099  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-nn 10313  df-n0 10570  df-z 10637  df-uz 10852  df-fz 11427  df-seq 11793  df-hash 12090
This theorem is referenced by:  isercolllem3  13130  gsumval3OLD  16364  gsumval3  16367
  Copyright terms: Public domain W3C validator