MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl2 Structured version   Unicode version

Theorem seqcl2 11824
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl2.1  |-  ( ph  ->  ( F `  M
)  e.  C )
seqcl2.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqcl2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcl2.4  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  D )
Assertion
Ref Expression
seqcl2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
Distinct variable groups:    x, y, C    x, D, y    x, F, y    x, M, y   
x, N    x,  .+ , y    ph, x, y
Allowed substitution hint:    N( y)

Proof of Theorem seqcl2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqcl2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 11459 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 16 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2503 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5691 . . . . . . 7  |-  ( x  =  M  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  M
) )
65eleq1d 2509 . . . . . 6  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) )
74, 6imbi12d 320 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) ) )
87imbi2d 316 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  M
)  e.  C ) ) ) )
9 eleq1 2503 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5691 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
1110eleq1d 2509 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) )
129, 11imbi12d 320 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) ) )
1312imbi2d 316 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C ) ) ) )
14 eleq1 2503 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5691 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
1615eleq1d 2509 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) )
1714, 16imbi12d 320 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( (
n  +  1 )  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
1817imbi2d 316 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) ) )
19 eleq1 2503 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5691 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
2120eleq1d 2509 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  N
)  e.  C ) )
2219, 21imbi12d 320 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( N  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  N
)  e.  C ) ) )
2322imbi2d 316 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  N
)  e.  C ) ) ) )
24 seqcl2.1 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  C )
25 seq1 11819 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
2625eleq1d 2509 . . . . . 6  |-  ( M  e.  ZZ  ->  (
(  seq M (  .+  ,  F ) `  M
)  e.  C  <->  ( F `  M )  e.  C
) )
2724, 26syl5ibr 221 . . . . 5  |-  ( M  e.  ZZ  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  M )  e.  C ) )
2827a1dd 46 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) ) )
29 peano2fzr 11463 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3029adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3130expr 615 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
3231imim1d 75 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) ) )
33 eluzp1p1 10886 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
3433ad2antrl 727 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
35 elfzuz3 11450 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
3635ad2antll 728 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
37 elfzuzb 11447 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
3834, 36, 37sylanbrc 664 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( ( M  + 
1 ) ... N
) )
39 seqcl2.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  D )
4039ralrimiva 2799 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  ( ( M  +  1 ) ... N ) ( F `  x
)  e.  D )
4140adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. x  e.  ( ( M  + 
1 ) ... N
) ( F `  x )  e.  D
)
42 fveq2 5691 . . . . . . . . . . . . . 14  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
4342eleq1d 2509 . . . . . . . . . . . . 13  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  D  <->  ( F `  ( n  +  1 ) )  e.  D
) )
4443rspcv 3069 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  ( A. x  e.  (
( M  +  1 ) ... N ) ( F `  x
)  e.  D  -> 
( F `  (
n  +  1 ) )  e.  D ) )
4538, 41, 44sylc 60 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  D
)
46 seqcl2.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
4746caovclg 6255 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C )
4847ex 434 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( (  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D )  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
4948adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
(  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D )  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
5045, 49mpan2d 674 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
51 seqp1 11821 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5251ad2antrl 727 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5352eleq1d 2509 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C ) )
5450, 53sylibrd 234 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) )
5554expr 615 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
(  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5655a2d 26 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5732, 56syld 44 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5857expcom 435 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) ) )
5958a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) )  ->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  e.  C ) ) ) )
608, 13, 18, 23, 28, 59uzind4 10912 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  e.  C ) ) )
611, 60mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  e.  C ) )
623, 61mpd 15 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   ` cfv 5418  (class class class)co 6091   1c1 9283    + caddc 9285   ZZcz 10646   ZZ>=cuz 10861   ...cfz 11437    seqcseq 11806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862  df-fz 11438  df-seq 11807
This theorem is referenced by:  seqf2  11825  seqcl  11826  seqz  11854
  Copyright terms: Public domain W3C validator