MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl2 Structured version   Unicode version

Theorem seqcl2 12107
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl2.1  |-  ( ph  ->  ( F `  M
)  e.  C )
seqcl2.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqcl2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcl2.4  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  D )
Assertion
Ref Expression
seqcl2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
Distinct variable groups:    x, y, C    x, D, y    x, F, y    x, M, y   
x, N    x,  .+ , y    ph, x, y
Allowed substitution hint:    N( y)

Proof of Theorem seqcl2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqcl2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 11697 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 16 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2526 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5848 . . . . . . 7  |-  ( x  =  M  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  M
) )
65eleq1d 2523 . . . . . 6  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) )
74, 6imbi12d 318 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) ) )
87imbi2d 314 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  M
)  e.  C ) ) ) )
9 eleq1 2526 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5848 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
1110eleq1d 2523 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) )
129, 11imbi12d 318 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) ) )
1312imbi2d 314 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C ) ) ) )
14 eleq1 2526 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5848 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
1615eleq1d 2523 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) )
1714, 16imbi12d 318 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( (
n  +  1 )  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
1817imbi2d 314 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) ) )
19 eleq1 2526 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5848 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
2120eleq1d 2523 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  N
)  e.  C ) )
2219, 21imbi12d 318 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( N  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  N
)  e.  C ) ) )
2322imbi2d 314 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  N
)  e.  C ) ) ) )
24 seqcl2.1 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  C )
25 seq1 12102 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
2625eleq1d 2523 . . . . . 6  |-  ( M  e.  ZZ  ->  (
(  seq M (  .+  ,  F ) `  M
)  e.  C  <->  ( F `  M )  e.  C
) )
2724, 26syl5ibr 221 . . . . 5  |-  ( M  e.  ZZ  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  M )  e.  C ) )
2827a1dd 46 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) ) )
29 peano2fzr 11702 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3029adantl 464 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3130expr 613 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
3231imim1d 75 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) ) )
33 eluzp1p1 11107 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
3433ad2antrl 725 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
35 elfzuz3 11688 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
3635ad2antll 726 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
37 elfzuzb 11685 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
3834, 36, 37sylanbrc 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( ( M  + 
1 ) ... N
) )
39 seqcl2.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  D )
4039ralrimiva 2868 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  ( ( M  +  1 ) ... N ) ( F `  x
)  e.  D )
4140adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. x  e.  ( ( M  + 
1 ) ... N
) ( F `  x )  e.  D
)
42 fveq2 5848 . . . . . . . . . . . . . 14  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
4342eleq1d 2523 . . . . . . . . . . . . 13  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  D  <->  ( F `  ( n  +  1 ) )  e.  D
) )
4443rspcv 3203 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  ( A. x  e.  (
( M  +  1 ) ... N ) ( F `  x
)  e.  D  -> 
( F `  (
n  +  1 ) )  e.  D ) )
4538, 41, 44sylc 60 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  D
)
46 seqcl2.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
4746caovclg 6440 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C )
4847ex 432 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( (  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D )  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
4948adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
(  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D )  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
5045, 49mpan2d 672 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
51 seqp1 12104 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5251ad2antrl 725 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5352eleq1d 2523 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C ) )
5450, 53sylibrd 234 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) )
5554expr 613 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
(  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5655a2d 26 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5732, 56syld 44 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5857expcom 433 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) ) )
5958a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) )  ->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  e.  C ) ) ) )
608, 13, 18, 23, 28, 59uzind4 11140 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  e.  C ) ) )
611, 60mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  e.  C ) )
623, 61mpd 15 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   ` cfv 5570  (class class class)co 6270   1c1 9482    + caddc 9484   ZZcz 10860   ZZ>=cuz 11082   ...cfz 11675    seqcseq 12089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-seq 12090
This theorem is referenced by:  seqf2  12108  seqcl  12109  seqz  12137
  Copyright terms: Public domain W3C validator