MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl2 Structured version   Unicode version

Theorem seqcl2 12093
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl2.1  |-  ( ph  ->  ( F `  M
)  e.  C )
seqcl2.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqcl2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcl2.4  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  D )
Assertion
Ref Expression
seqcl2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
Distinct variable groups:    x, y, C    x, D, y    x, F, y    x, M, y   
x, N    x,  .+ , y    ph, x, y
Allowed substitution hint:    N( y)

Proof of Theorem seqcl2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqcl2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 11694 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 16 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2539 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5866 . . . . . . 7  |-  ( x  =  M  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  M
) )
65eleq1d 2536 . . . . . 6  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) )
74, 6imbi12d 320 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) ) )
87imbi2d 316 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  M
)  e.  C ) ) ) )
9 eleq1 2539 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5866 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
1110eleq1d 2536 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) )
129, 11imbi12d 320 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) ) )
1312imbi2d 316 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C ) ) ) )
14 eleq1 2539 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5866 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
1615eleq1d 2536 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) )
1714, 16imbi12d 320 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( (
n  +  1 )  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
1817imbi2d 316 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) ) )
19 eleq1 2539 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5866 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
2120eleq1d 2536 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  e.  C  <->  (  seq M (  .+  ,  F ) `  N
)  e.  C ) )
2219, 21imbi12d 320 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  e.  C )  <->  ( N  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  N
)  e.  C ) ) )
2322imbi2d 316 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  N
)  e.  C ) ) ) )
24 seqcl2.1 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  C )
25 seq1 12088 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
2625eleq1d 2536 . . . . . 6  |-  ( M  e.  ZZ  ->  (
(  seq M (  .+  ,  F ) `  M
)  e.  C  <->  ( F `  M )  e.  C
) )
2724, 26syl5ibr 221 . . . . 5  |-  ( M  e.  ZZ  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  M )  e.  C ) )
2827a1dd 46 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  e.  C ) ) )
29 peano2fzr 11699 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3029adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3130expr 615 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
3231imim1d 75 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) ) )
33 eluzp1p1 11107 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
3433ad2antrl 727 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
35 elfzuz3 11685 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
3635ad2antll 728 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
37 elfzuzb 11682 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
3834, 36, 37sylanbrc 664 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( ( M  + 
1 ) ... N
) )
39 seqcl2.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  D )
4039ralrimiva 2878 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  ( ( M  +  1 ) ... N ) ( F `  x
)  e.  D )
4140adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. x  e.  ( ( M  + 
1 ) ... N
) ( F `  x )  e.  D
)
42 fveq2 5866 . . . . . . . . . . . . . 14  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
4342eleq1d 2536 . . . . . . . . . . . . 13  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  D  <->  ( F `  ( n  +  1 ) )  e.  D
) )
4443rspcv 3210 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  ( A. x  e.  (
( M  +  1 ) ... N ) ( F `  x
)  e.  D  -> 
( F `  (
n  +  1 ) )  e.  D ) )
4538, 41, 44sylc 60 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  D
)
46 seqcl2.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
4746caovclg 6451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C )
4847ex 434 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( (  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D )  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
4948adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
(  seq M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D )  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
5045, 49mpan2d 674 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
51 seqp1 12090 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5251ad2antrl 727 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5352eleq1d 2536 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C ) )
5450, 53sylibrd 234 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) )
5554expr 615 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
(  seq M (  .+  ,  F ) `  n
)  e.  C  -> 
(  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5655a2d 26 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5732, 56syld 44 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5857expcom 435 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C )  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) ) )
5958a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  C ) )  ->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  e.  C ) ) ) )
608, 13, 18, 23, 28, 59uzind4 11139 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  e.  C ) ) )
611, 60mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  e.  C ) )
623, 61mpd 15 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   ` cfv 5588  (class class class)co 6284   1c1 9493    + caddc 9495   ZZcz 10864   ZZ>=cuz 11082   ...cfz 11672    seqcseq 12075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-seq 12076
This theorem is referenced by:  seqf2  12094  seqcl  12095  seqz  12123
  Copyright terms: Public domain W3C validator