MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl Structured version   Unicode version

Theorem seqcl 12109
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcl.2  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
seqcl.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seqcl  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Distinct variable groups:    x, y,  .+    x, F, y    x, M, y    ph, x, y   
x, S, y    x, N
Allowed substitution hint:    N( y)

Proof of Theorem seqcl
StepHypRef Expression
1 seqcl.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz1 11696 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
31, 2syl 16 . . 3  |-  ( ph  ->  M  e.  ( M ... N ) )
4 seqcl.2 . . . 4  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
54ralrimiva 2868 . . 3  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  e.  S )
6 fveq2 5848 . . . . 5  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
76eleq1d 2523 . . . 4  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
87rspcv 3203 . . 3  |-  ( M  e.  ( M ... N )  ->  ( A. x  e.  ( M ... N ) ( F `  x )  e.  S  ->  ( F `  M )  e.  S ) )
93, 5, 8sylc 60 . 2  |-  ( ph  ->  ( F `  M
)  e.  S )
10 seqcl.3 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
11 eluzel2 11087 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
121, 11syl 16 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
13 fzp1ss 11735 . . . . 5  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
1412, 13syl 16 . . . 4  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
1514sselda 3489 . . 3  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  x  e.  ( M ... N
) )
1615, 4syldan 468 . 2  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  S )
179, 10, 1, 16seqcl2 12107 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804    C_ wss 3461   ` cfv 5570  (class class class)co 6270   1c1 9482    + caddc 9484   ZZcz 10860   ZZ>=cuz 11082   ...cfz 11675    seqcseq 12089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-seq 12090
This theorem is referenced by:  sermono  12121  seqsplit  12122  seqcaopr2  12125  seqf1olem2a  12127  seqf1olem2  12129  seqid3  12133  seqhomo  12136  seqz  12137  seqdistr  12140  serge0  12143  serle  12144  seqof  12146  seqcoll  12496  seqcoll2  12497  fsumcl2lem  13635  prodfn0  13785  prodfrec  13786  prodfdiv  13787  fprodcl2lem  13839  eulerthlem2  14396  gsumwsubmcl  16205  mulgnnsubcl  16353  gsumzcl2  17114  gsumzclOLD  17118  gsumzaddlem  17133  gsumzaddlemOLD  17135  gsummptfzcl  17192  lgscllem  23776  lgsval4a  23791  lgsneg  23792  lgsdir  23803  lgsdilem2  23804  lgsdi  23805  lgsne0  23806  gsumncl  28756  faclim  29412  mblfinlem2  30292  fmul01  31813  fmulcl  31814  fmuldfeq  31816  fmul01lt1lem1  31817  fmul01lt1lem2  31818  stoweidlem3  32024  stoweidlem42  32063  stoweidlem48  32069  wallispilem4  32089  wallispi  32091  wallispi2lem1  32092  wallispi2  32094  stirlinglem5  32099  stirlinglem7  32101  stirlinglem10  32104
  Copyright terms: Public domain W3C validator