MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcaopr3 Structured version   Unicode version

Theorem seqcaopr3 11953
Description: Lemma for seqcaopr2 11954. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqcaopr3.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr3.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
seqcaopr3.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcaopr3.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
seqcaopr3.5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
seqcaopr3.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
seqcaopr3.7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
Assertion
Ref Expression
seqcaopr3  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Distinct variable groups:    k, n, x, y, F    k, H, n    k, N, n, x, y    ph, k, n, x, y    k, G, n, x, y    k, M, n, x, y    Q, k, n, x, y    .+ , n, x, y    S, k, x, y
Allowed substitution hints:    .+ ( k)    S( n)    H( x, y)

Proof of Theorem seqcaopr3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 seqcaopr3.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 11571 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 16 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5794 . . . . 5  |-  ( z  =  M  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  M
) )
5 fveq2 5794 . . . . . 6  |-  ( z  =  M  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  M
) )
6 fveq2 5794 . . . . . 6  |-  ( z  =  M  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  M
) )
75, 6oveq12d 6213 . . . . 5  |-  ( z  =  M  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 M ) Q (  seq M ( 
.+  ,  G ) `
 M ) ) )
84, 7eqeq12d 2474 . . . 4  |-  ( z  =  M  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  M
)  =  ( (  seq M (  .+  ,  F ) `  M
) Q (  seq M (  .+  ,  G ) `  M
) ) ) )
98imbi2d 316 . . 3  |-  ( z  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) ) ) )
10 fveq2 5794 . . . . 5  |-  ( z  =  n  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  n
) )
11 fveq2 5794 . . . . . 6  |-  ( z  =  n  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  n
) )
12 fveq2 5794 . . . . . 6  |-  ( z  =  n  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  n
) )
1311, 12oveq12d 6213 . . . . 5  |-  ( z  =  n  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 n ) Q (  seq M ( 
.+  ,  G ) `
 n ) ) )
1410, 13eqeq12d 2474 . . . 4  |-  ( z  =  n  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) ) ) )
1514imbi2d 316 . . 3  |-  ( z  =  n  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 n )  =  ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
) ) ) )
16 fveq2 5794 . . . . 5  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  (
n  +  1 ) ) )
17 fveq2 5794 . . . . . 6  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fveq2 5794 . . . . . 6  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )
1917, 18oveq12d 6213 . . . . 5  |-  ( z  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) Q (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) ) ) )
2016, 19eqeq12d 2474 . . . 4  |-  ( z  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
2120imbi2d 316 . . 3  |-  ( z  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 ( n  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  ( n  +  1 ) ) Q (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) ) )
22 fveq2 5794 . . . . 5  |-  ( z  =  N  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  N
) )
23 fveq2 5794 . . . . . 6  |-  ( z  =  N  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  N
) )
24 fveq2 5794 . . . . . 6  |-  ( z  =  N  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  N
) )
2523, 24oveq12d 6213 . . . . 5  |-  ( z  =  N  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 N ) Q (  seq M ( 
.+  ,  G ) `
 N ) ) )
2622, 25eqeq12d 2474 . . . 4  |-  ( z  =  N  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  N
) Q (  seq M (  .+  ,  G ) `  N
) ) ) )
2726imbi2d 316 . . 3  |-  ( z  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) ) ) )
28 eluzfz1 11570 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
291, 28syl 16 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
30 seqcaopr3.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
3130ralrimiva 2827 . . . . . 6  |-  ( ph  ->  A. k  e.  ( M ... N ) ( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) ) )
32 fveq2 5794 . . . . . . . 8  |-  ( k  =  M  ->  ( H `  k )  =  ( H `  M ) )
33 fveq2 5794 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
34 fveq2 5794 . . . . . . . . 9  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
3533, 34oveq12d 6213 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
) Q ( G `
 k ) )  =  ( ( F `
 M ) Q ( G `  M
) ) )
3632, 35eqeq12d 2474 . . . . . . 7  |-  ( k  =  M  ->  (
( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) )  <->  ( H `  M )  =  ( ( F `  M
) Q ( G `
 M ) ) ) )
3736rspcv 3169 . . . . . 6  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( H `  k )  =  ( ( F `
 k ) Q ( G `  k
) )  ->  ( H `  M )  =  ( ( F `
 M ) Q ( G `  M
) ) ) )
3829, 31, 37sylc 60 . . . . 5  |-  ( ph  ->  ( H `  M
)  =  ( ( F `  M ) Q ( G `  M ) ) )
39 eluzel2 10972 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
401, 39syl 16 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
41 seq1 11931 . . . . . 6  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  H ) `  M
)  =  ( H `
 M ) )
4240, 41syl 16 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( H `  M
) )
43 seq1 11931 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
44 seq1 11931 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  G ) `  M
)  =  ( G `
 M ) )
4543, 44oveq12d 6213 . . . . . 6  |-  ( M  e.  ZZ  ->  (
(  seq M (  .+  ,  F ) `  M
) Q (  seq M (  .+  ,  G ) `  M
) )  =  ( ( F `  M
) Q ( G `
 M ) ) )
4640, 45syl 16 . . . . 5  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
)  =  ( ( F `  M ) Q ( G `  M ) ) )
4738, 42, 463eqtr4d 2503 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) )
4847a1i 11 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) ) )
49 oveq1 6202 . . . . . 6  |-  ( (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (
(  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) ) )
50 elfzouz 11669 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
5150adantl 466 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
52 seqp1 11933 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) ) )
5351, 52syl 16 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  H
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) ) )
54 seqcaopr3.7 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
55 fzofzp1 11736 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
5655adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( n  + 
1 )  e.  ( M ... N ) )
5731adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) ( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) ) )
58 fveq2 5794 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( H `  k )  =  ( H `  ( n  +  1
) ) )
59 fveq2 5794 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
60 fveq2 5794 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
6159, 60oveq12d 6213 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) Q ( G `
 k ) )  =  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) )
6258, 61eqeq12d 2474 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) )  <->  ( H `  ( n  +  1 ) )  =  ( ( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) ) )
6362rspcv 3169 . . . . . . . . . 10  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( H `  k )  =  ( ( F `
 k ) Q ( G `  k
) )  ->  ( H `  ( n  +  1 ) )  =  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) ) )
6456, 57, 63sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( H `  ( n  +  1
) )  =  ( ( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )
6564oveq2d 6211 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n ) Q (  seq M ( 
.+  ,  G ) `
 n ) ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) ) )
66 seqp1 11933 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
67 seqp1 11933 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
6866, 67oveq12d 6213 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  ( n  +  1 ) ) ) ) )
6951, 68syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  ( n  +  1 ) ) ) ) )
7054, 65, 693eqtr4rd 2504 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( H `  ( n  +  1 ) ) ) )
7153, 70eqeq12d 2474 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  <->  ( (  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) ) ) )
7249, 71syl5ibr 221 . . . . 5  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
7372expcom 435 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  H
) `  n )  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) ) )
7473a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  H
) `  n )  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) ) )  -> 
( ph  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) ) )
759, 15, 21, 27, 48, 74fzind2 11749 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  H
) `  N )  =  ( (  seq M (  .+  ,  F ) `  N
) Q (  seq M (  .+  ,  G ) `  N
) ) ) )
763, 75mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796   ` cfv 5521  (class class class)co 6195   1c1 9389    + caddc 9391   ZZcz 10752   ZZ>=cuz 10967   ...cfz 11549  ..^cfzo 11660    seqcseq 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-n0 10686  df-z 10753  df-uz 10968  df-fz 11550  df-fzo 11661  df-seq 11919
This theorem is referenced by:  seqcaopr2  11954  gsumzaddlem  16524  gsumzaddlemOLD  16526
  Copyright terms: Public domain W3C validator