MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcaopr2 Structured version   Unicode version

Theorem seqcaopr2 11834
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
seqcaopr2.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr2.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
seqcaopr2.3  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S
) ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
seqcaopr2.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcaopr2.5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
seqcaopr2.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
seqcaopr2.7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
Assertion
Ref Expression
seqcaopr2  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Distinct variable groups:    w, k, x, y, z, F    k, H, z    k, N, x, y, z    ph, k, w, x, y, z    k, G, w, x, y, z   
k, M, w, x, y, z    Q, k, w, x, y, z   
w,  .+ , x, y,
z    S, k, w, x, y, z
Allowed substitution hints:    .+ ( k)    H( x, y, w)    N( w)

Proof of Theorem seqcaopr2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqcaopr2.1 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2 seqcaopr2.2 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
3 seqcaopr2.4 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 seqcaopr2.5 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  S
)
5 seqcaopr2.6 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  S
)
6 seqcaopr2.7 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
7 elfzouz 11549 . . . . 5  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
87adantl 466 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
9 elfzouz2 11558 . . . . . . . 8  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
109adantl 466 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  N  e.  (
ZZ>= `  n ) )
11 fzss2 11490 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
1210, 11syl 16 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( M ... n )  C_  ( M ... N ) )
1312sselda 3351 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  x  e.  ( M ... N
) )
145ralrimiva 2794 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) ( G `  k
)  e.  S )
1514adantr 465 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. k  e.  ( M ... N ) ( G `  k
)  e.  S )
16 fveq2 5686 . . . . . . . 8  |-  ( k  =  x  ->  ( G `  k )  =  ( G `  x ) )
1716eleq1d 2504 . . . . . . 7  |-  ( k  =  x  ->  (
( G `  k
)  e.  S  <->  ( G `  x )  e.  S
) )
1817rspccva 3067 . . . . . 6  |-  ( ( A. k  e.  ( M ... N ) ( G `  k
)  e.  S  /\  x  e.  ( M ... N ) )  -> 
( G `  x
)  e.  S )
1915, 18sylan 471 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... N
) )  ->  ( G `  x )  e.  S )
2013, 19syldan 470 . . . 4  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  ( G `  x )  e.  S )
211adantlr 714 . . . 4  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
228, 20, 21seqcl 11818 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  n )  e.  S )
23 fzofzp1 11616 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
24 fveq2 5686 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
2524eleq1d 2504 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( G `  k
)  e.  S  <->  ( G `  ( n  +  1 ) )  e.  S
) )
2625rspccva 3067 . . . 4  |-  ( ( A. k  e.  ( M ... N ) ( G `  k
)  e.  S  /\  ( n  +  1
)  e.  ( M ... N ) )  ->  ( G `  ( n  +  1
) )  e.  S
)
2714, 23, 26syl2an 477 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  e.  S
)
284ralrimiva 2794 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  S )
29 fveq2 5686 . . . . . . . . . 10  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3029eleq1d 2504 . . . . . . . . 9  |-  ( k  =  x  ->  (
( F `  k
)  e.  S  <->  ( F `  x )  e.  S
) )
3130rspccva 3067 . . . . . . . 8  |-  ( ( A. k  e.  ( M ... N ) ( F `  k
)  e.  S  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  S )
3228, 31sylan 471 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
3332adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... N
) )  ->  ( F `  x )  e.  S )
3413, 33syldan 470 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  ( F `  x )  e.  S )
358, 34, 21seqcl 11818 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F
) `  n )  e.  S )
36 fveq2 5686 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
3736eleq1d 2504 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  S  <->  ( F `  ( n  +  1 ) )  e.  S
) )
3837rspccva 3067 . . . . 5  |-  ( ( A. k  e.  ( M ... N ) ( F `  k
)  e.  S  /\  ( n  +  1
)  e.  ( M ... N ) )  ->  ( F `  ( n  +  1
) )  e.  S
)
3928, 23, 38syl2an 477 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  S
)
40 seqcaopr2.3 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S
) ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4140anassrs 648 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4241ralrimivva 2803 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4342ralrimivva 2803 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4443adantr 465 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
45 oveq1 6093 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( x Q z )  =  ( (  seq M (  .+  ,  F ) `  n
) Q z ) )
4645oveq1d 6101 . . . . . . 7  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n ) Q z )  .+  (
y Q w ) ) )
47 oveq1 6093 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( x  .+  y
)  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
)
4847oveq1d 6101 . . . . . . 7  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( x  .+  y ) Q ( z  .+  w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  y ) Q ( z  .+  w ) ) )
4946, 48eqeq12d 2452 . . . . . 6  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( ( x Q z )  .+  ( y Q w ) )  =  ( ( x  .+  y
) Q ( z 
.+  w ) )  <-> 
( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) ) ) )
50492ralbidv 2752 . . . . 5  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  ( y Q w ) )  =  ( ( x  .+  y
) Q ( z 
.+  w ) )  <->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) ) ) )
51 oveq1 6093 . . . . . . . 8  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
y Q w )  =  ( ( F `
 ( n  + 
1 ) ) Q w ) )
5251oveq2d 6102 . . . . . . 7  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( y Q w ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( ( F `  ( n  +  1
) ) Q w ) ) )
53 oveq2 6094 . . . . . . . 8  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
(  seq M (  .+  ,  F ) `  n
)  .+  y )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5453oveq1d 6101 . . . . . . 7  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n )  .+  y ) Q ( z  .+  w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( z 
.+  w ) ) )
5552, 54eqeq12d 2452 . . . . . 6  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) )  <->  ( (
(  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) ) )
56552ralbidv 2752 . . . . 5  |-  ( y  =  ( F `  ( n  +  1
) )  ->  ( A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) )  <->  A. z  e.  S  A. w  e.  S  ( (
(  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) ) )
5750, 56rspc2va 3075 . . . 4  |-  ( ( ( (  seq M
(  .+  ,  F
) `  n )  e.  S  /\  ( F `  ( n  +  1 ) )  e.  S )  /\  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  (
( x Q z )  .+  ( y Q w ) )  =  ( ( x 
.+  y ) Q ( z  .+  w
) ) )  ->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) )
5835, 39, 44, 57syl21anc 1217 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) )
59 oveq2 6094 . . . . . 6  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( (  seq M
(  .+  ,  F
) `  n ) Q z )  =  ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
) )
6059oveq1d 6101 . . . . 5  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) ) )
61 oveq1 6093 . . . . . 6  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( z  .+  w
)  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
)
6261oveq2d 6102 . . . . 5  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  w ) ) )
6360, 62eqeq12d 2452 . . . 4  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) )  <->  ( (
(  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
) ) )
64 oveq2 6094 . . . . . 6  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( F `  (
n  +  1 ) ) Q w )  =  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) )
6564oveq2d 6102 . . . . 5  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( ( F `  ( n  +  1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) ) )
66 oveq2 6094 . . . . . 6  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
(  seq M (  .+  ,  G ) `  n
)  .+  w )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
6766oveq2d 6102 . . . . 5  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M
(  .+  ,  G
) `  n )  .+  ( G `  (
n  +  1 ) ) ) ) )
6865, 67eqeq12d 2452 . . . 4  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
)  <->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) ) )
6963, 68rspc2va 3075 . . 3  |-  ( ( ( (  seq M
(  .+  ,  G
) `  n )  e.  S  /\  ( G `  ( n  +  1 ) )  e.  S )  /\  A. z  e.  S  A. w  e.  S  (
( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( ( F `  ( n  +  1
) ) Q w ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( z  .+  w ) ) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( ( F `  ( n  +  1 ) ) Q ( G `  ( n  +  1
) ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M
(  .+  ,  G
) `  n )  .+  ( G `  (
n  +  1 ) ) ) ) )
7022, 27, 58, 69syl21anc 1217 . 2  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
711, 2, 3, 4, 5, 6, 70seqcaopr3 11833 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710    C_ wss 3323   ` cfv 5413  (class class class)co 6086   1c1 9275    + caddc 9277   ZZ>=cuz 10853   ...cfz 11429  ..^cfzo 11540    seqcseq 11798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-fzo 11541  df-seq 11799
This theorem is referenced by:  seqcaopr  11835  sersub  11841
  Copyright terms: Public domain W3C validator