MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1 Structured version   Unicode version

Theorem seq1 11802
Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seq1  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )

Proof of Theorem seq1
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqeq1 11792 . . . 4  |-  ( M  =  if ( M  e.  ZZ ,  M ,  0 )  ->  seq M (  .+  ,  F )  =  seq if ( M  e.  ZZ ,  M ,  0 ) (  .+  ,  F
) )
2 id 22 . . . 4  |-  ( M  =  if ( M  e.  ZZ ,  M ,  0 )  ->  M  =  if ( M  e.  ZZ ,  M ,  0 ) )
31, 2fveq12d 5685 . . 3  |-  ( M  =  if ( M  e.  ZZ ,  M ,  0 )  -> 
(  seq M (  .+  ,  F ) `  M
)  =  (  seq
if ( M  e.  ZZ ,  M , 
0 ) (  .+  ,  F ) `  if ( M  e.  ZZ ,  M ,  0 ) ) )
4 fveq2 5679 . . 3  |-  ( M  =  if ( M  e.  ZZ ,  M ,  0 )  -> 
( F `  M
)  =  ( F `
 if ( M  e.  ZZ ,  M ,  0 ) ) )
53, 4eqeq12d 2447 . 2  |-  ( M  =  if ( M  e.  ZZ ,  M ,  0 )  -> 
( (  seq M
(  .+  ,  F
) `  M )  =  ( F `  M )  <->  (  seq if ( M  e.  ZZ ,  M ,  0 ) (  .+  ,  F
) `  if ( M  e.  ZZ ,  M ,  0 ) )  =  ( F `
 if ( M  e.  ZZ ,  M ,  0 ) ) ) )
6 0z 10644 . . . 4  |-  0  e.  ZZ
76elimel 3840 . . 3  |-  if ( M  e.  ZZ ,  M ,  0 )  e.  ZZ
8 eqid 2433 . . 3  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( M  e.  ZZ ,  M , 
0 ) )  |`  om )  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( M  e.  ZZ ,  M , 
0 ) )  |`  om )
9 fvex 5689 . . 3  |-  ( F `
 if ( M  e.  ZZ ,  M ,  0 ) )  e.  _V
10 eqid 2433 . . 3  |-  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e. 
_V ,  w  e. 
_V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. if ( M  e.  ZZ ,  M ,  0 ) ,  ( F `  if ( M  e.  ZZ ,  M ,  0 ) ) >. )  |`  om )  =  ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. if ( M  e.  ZZ ,  M ,  0 ) ,  ( F `  if ( M  e.  ZZ ,  M ,  0 ) ) >. )  |`  om )
1110seqval 11800 . . 3  |-  seq if ( M  e.  ZZ ,  M ,  0 ) (  .+  ,  F
)  =  ran  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e. 
_V ,  w  e. 
_V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. if ( M  e.  ZZ ,  M ,  0 ) ,  ( F `  if ( M  e.  ZZ ,  M ,  0 ) ) >. )  |`  om )
127, 8, 9, 10, 11uzrdg0i 11765 . 2  |-  (  seq
if ( M  e.  ZZ ,  M , 
0 ) (  .+  ,  F ) `  if ( M  e.  ZZ ,  M ,  0 ) )  =  ( F `
 if ( M  e.  ZZ ,  M ,  0 ) )
135, 12dedth 3829 1  |-  ( M  e.  ZZ  ->  (  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1362    e. wcel 1755   _Vcvv 2962   ifcif 3779   <.cop 3871    e. cmpt 4338    |` cres 4829   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   omcom 6465   reccrdg 6851   0cc0 9269   1c1 9270    + caddc 9272   ZZcz 10633    seqcseq 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-nn 10310  df-n0 10567  df-z 10634  df-uz 10849  df-seq 11790
This theorem is referenced by:  seq1i  11803  seqcl2  11807  seqfveq2  11811  seqfveq  11813  seqshft2  11815  seqsplit  11822  seq1p  11823  seqcaopr3  11824  seqf1olem2a  11827  seqf1olem2  11829  seqf1o  11830  seqid  11834  seqhomo  11836  seqz  11837  exp1  11854  fac1  12038  bcn2  12078  seqcoll  12199  isumrpcl  13288  ruclem6  13499  sadc0  13632  smup0  13657  seq1st  13728  algr0  13729  eulerthlem2  13839  pcmpt  13936  gsumprval  15493  voliunlem1  20872  volsup  20878  abelthlem6  21785  abelthlem9  21789  leibpi  22221  bposlem5  22511  gx1  23571  opsqrlem2  25367  esumfzf  26371  sseqp1  26625  rrvsum  26684  cvmliftlem4  27024  clim2prod  27249  prodfn0  27255  prodfrec  27256  iprodefisumlem  27350  faclimlem1  27395  heiborlem4  28554  fmul01  29603  fmuldfeq  29606  fmul01lt1lem1  29607  stoweidlem3  29641  wallispilem4  29706  wallispi2lem1  29709  wallispi2lem2  29710  stirlinglem7  29718  stirlinglem11  29722
  Copyright terms: Public domain W3C validator