MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selbergr Unicode version

Theorem selbergr 20549
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
selbergr  |-  ( x  e.  RR+  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  ( R `
 ( x  / 
d ) ) ) )  /  x ) )  e.  O ( 1 )
Distinct variable groups:    a, d, x    R, d, x
Allowed substitution hint:    R( a)

Proof of Theorem selbergr
StepHypRef Expression
1 reex 8708 . . . . . . 7  |-  RR  e.  _V
2 rpssre 10243 . . . . . . 7  |-  RR+  C_  RR
31, 2ssexi 4056 . . . . . 6  |-  RR+  e.  _V
43a1i 12 . . . . 5  |-  (  T. 
->  RR+  e.  _V )
5 ovex 5735 . . . . . 6  |-  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  _V
65a1i 12 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  _V )
7 ovex 5735 . . . . . 6  |-  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) )  e.  _V
87a1i 12 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) )  e.  _V )
9 eqidd 2254 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) ) )
10 eqidd 2254 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) )  =  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) ) )
114, 6, 8, 9, 10offval2 5947 . . . 4  |-  (  T. 
->  ( ( x  e.  RR+  |->  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) ) ) ) )
1211trud 1320 . . 3  |-  ( ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) ) ) )
13 pntrval.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1413pntrf 20544 . . . . . . . . . . 11  |-  R : RR+
--> RR
1514ffvelrni 5516 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1615recnd 8741 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  CC )
17 relogcl 19764 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
1817recnd 8741 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
1916, 18mulcld 8735 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ( R `  x )  x.  ( log `  x
) )  e.  CC )
20 fzfid 10913 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
21 elfznn 10697 . . . . . . . . . . . . 13  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
2221adantl 454 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
23 vmacl 20188 . . . . . . . . . . . 12  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
2422, 23syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  RR )
2524recnd 8741 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  CC )
26 rpre 10239 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  RR )
27 nndivre 9661 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( x  /  d
)  e.  RR )
2826, 21, 27syl2an 465 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR )
29 chpcl 20194 . . . . . . . . . . . 12  |-  ( ( x  /  d )  e.  RR  ->  (ψ `  ( x  /  d
) )  e.  RR )
3028, 29syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  d ) )  e.  RR )
3130recnd 8741 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  d ) )  e.  CC )
3225, 31mulcld 8735 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  e.  CC )
3320, 32fsumcl 12083 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  e.  CC )
3419, 33addcld 8734 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( R `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  e.  CC )
35 rpcn 10241 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  CC )
36 rpne0 10248 . . . . . . 7  |-  ( x  e.  RR+  ->  x  =/=  0 )
3734, 35, 36divcld 9416 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  e.  CC )
3824, 22nndivred 9674 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  /  d
)  e.  RR )
3938recnd 8741 . . . . . . 7  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  /  d
)  e.  CC )
4020, 39fsumcl 12083 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d )  e.  CC )
4137, 40, 18nnncan2d 9072 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( ( ( ( R `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( log `  x ) )  -  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) )  =  ( ( ( ( ( R `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d ) ) )
42 chpcl 20194 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
4326, 42syl 17 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
4443recnd 8741 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  CC )
4544, 18mulcld 8735 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  ( log `  x ) )  e.  CC )
4645, 33addcld 8734 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  e.  CC )
4746, 35, 36divcld 9416 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  e.  CC )
4847, 18, 18subsub4d 9068 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( ( log `  x )  +  ( log `  x
) ) ) )
4913pntrval 20543 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
5049oveq1d 5725 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( R `  x )  x.  ( log `  x
) )  =  ( ( (ψ `  x
)  -  x )  x.  ( log `  x
) ) )
5144, 35, 18subdird 9116 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  -  x )  x.  ( log `  x ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) ) )
5250, 51eqtrd 2285 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( R `  x )  x.  ( log `  x
) )  =  ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( x  x.  ( log `  x ) ) ) )
5352oveq1d 5725 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( ( R `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
x  x.  ( log `  x ) ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) ) )
5435, 18mulcld 8735 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  x.  ( log `  x
) )  e.  CC )
5545, 33, 54addsubd 9058 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  -  ( x  x.  ( log `  x
) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) ) )
5653, 55eqtr4d 2288 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( R `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  -  (
x  x.  ( log `  x ) ) ) )
5756oveq1d 5725 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  -  (
x  x.  ( log `  x ) ) )  /  x ) )
58 rpcnne0 10250 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
59 divsubdir 9336 . . . . . . . . . 10  |-  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  e.  CC  /\  (
x  x.  ( log `  x ) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  -> 
( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  -  (
x  x.  ( log `  x ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( ( x  x.  ( log `  x ) )  /  x ) ) )
6046, 54, 58, 59syl3anc 1187 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  -  ( x  x.  ( log `  x
) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( ( x  x.  ( log `  x
) )  /  x
) ) )
6118, 35, 36divcan3d 9421 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( x  x.  ( log `  x ) )  /  x )  =  ( log `  x ) )
6261oveq2d 5726 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( ( x  x.  ( log `  x
) )  /  x
) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( log `  x ) ) )
6357, 60, 623eqtrd 2289 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( log `  x ) ) )
6463oveq1d 5725 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( log `  x ) )  =  ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) ) )
65182timesd 9833 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( 2  x.  ( log `  x
) )  =  ( ( log `  x
)  +  ( log `  x ) ) )
6665oveq2d 5726 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( ( log `  x
)  +  ( log `  x ) ) ) )
6748, 64, 663eqtr4d 2295 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( log `  x ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )
6867oveq1d 5725 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( ( ( ( R `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( log `  x ) )  -  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) )  =  ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) ) ) )
6935, 40mulcld 8735 . . . . . . 7  |-  ( x  e.  RR+  ->  ( x  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d ) )  e.  CC )
70 divsubdir 9336 . . . . . . 7  |-  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  e.  CC  /\  ( x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d ) )  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  -  ( x  x. 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d ) ) )  /  x
)  =  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( ( x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) )  /  x ) ) )
7134, 69, 58, 70syl3anc 1187 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  -  (
x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) ) )  /  x
)  =  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( ( x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) )  /  x ) ) )
7219, 33, 69addsubassd 9057 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  -  ( x  x. 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d ) ) )  =  ( ( ( R `  x )  x.  ( log `  x ) )  +  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  -  ( x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) ) ) ) )
7335adantr 453 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
7473, 39mulcld 8735 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( (Λ `  d
)  /  d ) )  e.  CC )
7520, 32, 74fsumsub 12127 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  -  ( x  x.  (
(Λ `  d )  / 
d ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( x  x.  ( (Λ `  d )  /  d
) ) ) )
7628recnd 8741 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  CC )
7725, 31, 76subdid 9115 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (
(ψ `  ( x  /  d ) )  -  ( x  / 
d ) ) )  =  ( ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  -  ( (Λ `  d )  x.  ( x  /  d
) ) ) )
7821nnrpd 10268 . . . . . . . . . . . . . . 15  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
79 rpdivcl 10255 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
8078, 79sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
8113pntrval 20543 . . . . . . . . . . . . . 14  |-  ( ( x  /  d )  e.  RR+  ->  ( R `
 ( x  / 
d ) )  =  ( (ψ `  (
x  /  d ) )  -  ( x  /  d ) ) )
8280, 81syl 17 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  d
) )  =  ( (ψ `  ( x  /  d ) )  -  ( x  / 
d ) ) )
8382oveq2d 5726 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  ( R `  ( x  /  d ) ) )  =  ( (Λ `  d )  x.  (
(ψ `  ( x  /  d ) )  -  ( x  / 
d ) ) ) )
8422nnrpd 10268 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
85 rpcnne0 10250 . . . . . . . . . . . . . . 15  |-  ( d  e.  RR+  ->  ( d  e.  CC  /\  d  =/=  0 ) )
8684, 85syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
87 div12 9326 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  (Λ `  d )  e.  CC  /\  ( d  e.  CC  /\  d  =/=  0 ) )  -> 
( x  x.  (
(Λ `  d )  / 
d ) )  =  ( (Λ `  d
)  x.  ( x  /  d ) ) )
8873, 25, 86, 87syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( (Λ `  d
)  /  d ) )  =  ( (Λ `  d )  x.  (
x  /  d ) ) )
8988oveq2d 5726 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  d )  x.  (ψ `  ( x  /  d ) ) )  -  ( x  x.  ( (Λ `  d
)  /  d ) ) )  =  ( ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  -  ( (Λ `  d )  x.  ( x  /  d
) ) ) )
9077, 83, 893eqtr4d 2295 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  ( R `  ( x  /  d ) ) )  =  ( ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) )  -  ( x  x.  ( (Λ `  d
)  /  d ) ) ) )
9190sumeq2dv 12053 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  x.  ( R `
 ( x  / 
d ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  -  ( x  x.  (
(Λ `  d )  / 
d ) ) ) )
9220, 35, 39fsummulc2 12123 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( x  x.  (
(Λ `  d )  / 
d ) ) )
9392oveq2d 5726 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) )  -  ( x  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d ) ) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( x  x.  ( (Λ `  d )  /  d
) ) ) )
9475, 91, 933eqtr4rd 2296 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) )  -  ( x  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  ( R `  (
x  /  d ) ) ) )
9594oveq2d 5726 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ( ( R `  x
)  x.  ( log `  x ) )  +  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  -  ( x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) ) ) )  =  ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  ( R `  (
x  /  d ) ) ) ) )
9672, 95eqtrd 2285 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  -  ( x  x. 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d ) ) )  =  ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  ( R `
 ( x  / 
d ) ) ) ) )
9796oveq1d 5725 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  -  (
x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) ) )  /  x
)  =  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  ( R `
 ( x  / 
d ) ) ) )  /  x ) )
9840, 35, 36divcan3d 9421 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) )  /  x )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  /  d ) )
9998oveq2d 5726 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( ( x  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) )  /  x ) )  =  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) ) )
10071, 97, 993eqtr3rd 2294 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d ) )  =  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  ( R `
 ( x  / 
d ) ) ) )  /  x ) )
10141, 68, 1003eqtr3d 2293 . . . 4  |-  ( x  e.  RR+  ->  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) ) )  =  ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  ( R `  (
x  /  d ) ) ) )  /  x ) )
102101mpteq2ia 3999 . . 3  |-  ( x  e.  RR+  |->  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  ( R `  (
x  /  d ) ) ) )  /  x ) )
10312, 102eqtri 2273 . 2  |-  ( ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( R `  x
)  x.  ( log `  x ) )  + 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  ( R `
 ( x  / 
d ) ) ) )  /  x ) )
104 selberg2 20532 . . 3  |-  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
105 vmadivsum 20463 . . 3  |-  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) ) )  e.  O
( 1 )
106 o1sub 11966 . . 3  |-  ( ( ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  x.  (ψ `  ( x  /  d ) ) ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )  e.  O ( 1 )  /\  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d )  /  d )  -  ( log `  x ) ) )  e.  O
( 1 ) )  ->  ( ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) ) )  e.  O ( 1 ) )
107104, 105, 106mp2an 656 . 2  |-  ( ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  /  d )  -  ( log `  x
) ) ) )  e.  O ( 1 )
108103, 107eqeltrri 2324 1  |-  ( x  e.  RR+  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  ( R `
 ( x  / 
d ) ) ) )  /  x ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    T. wtru 1312    = wceq 1619    e. wcel 1621    =/= wne 2412   _Vcvv 2727    e. cmpt 3974   ` cfv 4592  (class class class)co 5710    o Fcof 5928   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    - cmin 8917    / cdiv 9303   NNcn 9626   2c2 9675   RR+crp 10233   ...cfz 10660   |_cfl 10802   O ( 1 )co1 11837   sum_csu 12035   logclog 19744  Λcvma 20161  ψcchp 20162
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-disj 3892  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-o1 11841  df-lo1 11842  df-sum 12036  df-ef 12223  df-e 12224  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747  df-em 20119  df-cht 20166  df-vma 20167  df-chp 20168  df-ppi 20169  df-mu 20170
  Copyright terms: Public domain W3C validator