MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem2 Structured version   Unicode version

Theorem selberglem2 23456
Description: Lemma for selberg 23458. (Contributed by Mario Carneiro, 23-May-2016.)
Hypothesis
Ref Expression
selberglem1.t  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
Assertion
Ref Expression
selberglem2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )  e.  O(1)
Distinct variable group:    m, n, x
Allowed substitution hints:    T( x, m, n)

Proof of Theorem selberglem2
StepHypRef Expression
1 reex 9579 . . . . . . 7  |-  RR  e.  _V
2 rpssre 11226 . . . . . . 7  |-  RR+  C_  RR
31, 2ssexi 4592 . . . . . 6  |-  RR+  e.  _V
43a1i 11 . . . . 5  |-  ( T. 
->  RR+  e.  _V )
5 fzfid 12046 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
6 elfznn 11710 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
76adantl 466 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
8 mucl 23140 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
97, 8syl 16 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
109zred 10962 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
1110recnd 9618 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
12 fzfid 12046 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
13 elfznn 11710 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
1413adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
1514nnrpd 11251 . . . . . . . . . . . . 13  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
1615relogcld 22733 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( log `  m )  e.  RR )
1716resqcld 12298 . . . . . . . . . . 11  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( ( log `  m ) ^
2 )  e.  RR )
1812, 17fsumrecl 13512 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  e.  RR )
19 simplr 754 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
2018, 19rerpdivcld 11279 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  e.  RR )
2120recnd 9618 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  e.  CC )
22 selberglem1.t . . . . . . . . . 10  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
23 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  e.  RR+ )
246nnrpd 11251 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
25 rpdivcl 11238 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
2623, 24, 25syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2726relogcld 22733 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
2827resqcld 12298 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  RR )
29 2re 10601 . . . . . . . . . . . . 13  |-  2  e.  RR
30 remulcl 9573 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  ( log `  ( x  /  n ) )  e.  RR )  -> 
( 2  x.  ( log `  ( x  /  n ) ) )  e.  RR )
3129, 27, 30sylancr 663 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  (
x  /  n ) ) )  e.  RR )
32 resubcl 9879 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  ( 2  x.  ( log `  ( x  /  n ) ) )  e.  RR )  -> 
( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) )  e.  RR )
3329, 31, 32sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) )  e.  RR )
3428, 33readdcld 9619 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  RR )
3534, 7nndivred 10580 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
)  e.  RR )
3622, 35syl5eqel 2559 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  RR )
3736recnd 9618 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
3821, 37subcld 9926 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T )  e.  CC )
3911, 38mulcld 9612 . . . . . 6  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
405, 39fsumcl 13511 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
4111, 37mulcld 9612 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  T )  e.  CC )
425, 41fsumcl 13511 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  e.  CC )
43 2cn 10602 . . . . . . 7  |-  2  e.  CC
44 relogcl 22688 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
4544adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
4645recnd 9618 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
47 mulcl 9572 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( log `  x )  e.  CC )  -> 
( 2  x.  ( log `  x ) )  e.  CC )
4843, 46, 47sylancr 663 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 2  x.  ( log `  x
) )  e.  CC )
4942, 48subcld 9926 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  e.  CC )
50 eqidd 2468 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
51 eqidd 2468 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )
524, 40, 49, 50, 51offval2 6538 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  oF  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) ) )
5340, 42, 48addsubassd 9946 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )
54 rpcnne0 11233 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
5554adantl 466 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
5655simpld 459 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  e.  CC )
5710adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( mmu `  n )  e.  RR )
5857, 17remulcld 9620 . . . . . . . . . . 11  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  x.  ( ( log `  m
) ^ 2 ) )  e.  RR )
5912, 58fsumrecl 13512 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  e.  RR )
6059recnd 9618 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  e.  CC )
6155simprd 463 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  =/=  0 )
625, 56, 60, 61fsumdivc 13557 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x ) )
6317recnd 9618 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( ( log `  m ) ^
2 )  e.  CC )
6412, 63fsumcl 13511 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  e.  CC )
6555adantr 465 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
66 divass 10221 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  sum_
m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
6711, 64, 65, 66syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
6812, 11, 63fsummulc2 13555 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) ) )
6968oveq1d 6297 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x ) )
7021, 37npcand 9930 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T )  +  T
)  =  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x ) )
7170oveq2d 6298 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
)  +  T ) )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
7211, 38, 37adddid 9616 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
)  +  T ) )  =  ( ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
7371, 72eqtr3d 2510 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  =  ( ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  ( ( mmu `  n
)  x.  T ) ) )
7467, 69, 733eqtr3d 2516 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  =  ( ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
7574sumeq2dv 13481 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
765, 39, 41fsumadd 13517 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) ) )
7762, 75, 763eqtrrd 2513 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x ) )
7877oveq1d 6297 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
7953, 78eqtr3d 2510 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T )  -  ( 2  x.  ( log `  x
) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x
) ) ) )
8079mpteq2dva 4533 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) ) )
8152, 80eqtrd 2508 . . 3  |-  ( T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  oF  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) ) )
82 1red 9607 . . . . 5  |-  ( T. 
->  1  e.  RR )
835, 28fsumrecl 13512 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  RR )
8483, 23rerpdivcld 11279 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  e.  RR )
8584recnd 9618 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  e.  CC )
86 2cnd 10604 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  2  e.  CC )
87 2nn0 10808 . . . . . . . 8  |-  2  e.  NN0
88 logexprlim 23225 . . . . . . . 8  |-  ( 2  e.  NN0  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x ) )  ~~> r  ( ! `  2 ) )
8987, 88mp1i 12 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x ) )  ~~> r  ( ! ` 
2 ) )
90 2cnd 10604 . . . . . . . 8  |-  ( T. 
->  2  e.  CC )
91 rlimconst 13323 . . . . . . . 8  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  ~~> r  2 )
922, 90, 91sylancr 663 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  2 )  ~~> r  2 )
9385, 86, 89, 92rlimadd 13421 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  ~~> r  ( ( ! `  2
)  +  2 ) )
94 rlimo1 13395 . . . . . 6  |-  ( ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  ~~> r  ( ( ! `  2
)  +  2 )  ->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  O(1) )
9593, 94syl 16 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  O(1) )
96 readdcl 9571 . . . . . 6  |-  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  e.  RR  /\  2  e.  RR )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  RR )
9784, 29, 96sylancl 662 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  RR )
9840abscld 13223 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
9997recnd 9618 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  CC )
10099abscld 13223 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  RR )
10139abscld 13223 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
1025, 101fsumrecl 13512 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
1035, 39fsumabs 13571 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
104 readdcl 9571 . . . . . . . . . . . 12  |-  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  e.  RR  /\  2  e.  RR )  ->  (
( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  RR )
10528, 29, 104sylancl 662 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  RR )
106105, 19rerpdivcld 11279 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  e.  RR )
1075, 106fsumrecl 13512 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
)  e.  RR )
10838abscld 13223 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  RR )
10911, 38absmuld 13241 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( ( abs `  ( mmu `  n
) )  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
11011abscld 13223 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  e.  RR )
111 1red 9607 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
11238absge0d 13231 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
113 mule1 23147 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  ( abs `  ( mmu `  n ) )  <_ 
1 )
1147, 113syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  <_  1
)
115110, 111, 108, 112, 114lemul1ad 10481 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( 1  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
116108recnd 9618 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
117116mulid2d 9610 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
118115, 117breqtrd 4471 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
119109, 118eqbrtrd 4467 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
12065simpld 459 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
121120, 38absmuld 13241 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( x  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( ( abs `  x )  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
122120, 21, 37subdid 10008 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  =  ( ( x  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  -  ( x  x.  T ) ) )
12365simprd 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  =/=  0 )
12464, 120, 123divcan2d 10318 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )
12534recnd 9618 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
1267nnrpd 11251 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
127 rpcnne0 11233 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
128126, 127syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
129 divass 10221 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( x  x.  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
) ) )
13022oveq2i 6293 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  x.  T )  =  ( x  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )
131129, 130syl6eqr 2526 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( x  x.  T ) )
132 div23 10222 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
133131, 132eqtr3d 2510 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( x  x.  T )  =  ( ( x  /  n
)  x.  ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
134120, 125, 128, 133syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  T )  =  ( ( x  /  n
)  x.  ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
135124, 134oveq12d 6300 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x ) )  -  ( x  x.  T
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )
136122, 135eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )
137136fveq2d 5868 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( x  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) ) )
138 rprege0 11230 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
139 absid 13086 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
14019, 138, 1393syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  x )  =  x )
141140oveq1d 6297 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  x )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( x  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
142121, 137, 1413eqtr3d 2516 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  =  ( x  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
1437nncnd 10548 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
144143mulid2d 9610 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
145 rpre 11222 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR+  ->  x  e.  RR )
146145adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( T.  /\  x  e.  RR+ )  ->  x  e.  RR )
147 fznnfl 11952 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
148146, 147syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( n  e.  ( 1 ... ( |_ `  x
) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
149148simplbda 624 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
150144, 149eqbrtrd 4467 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
15119rpred 11252 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
152111, 151, 126lemuldivd 11297 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
153150, 152mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
154 log2sumbnd 23454 . . . . . . . . . . . . . 14  |-  ( ( ( x  /  n
)  e.  RR+  /\  1  <_  ( x  /  n
) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  <_ 
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 ) )
15526, 153, 154syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  <_ 
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 ) )
156142, 155eqbrtrrd 4469 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 ) )
157108, 105, 19lemuldiv2d 11298 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  <->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  <_ 
( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) ) )
158156, 157mpbid 210 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  <_ 
( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) )
159101, 108, 106, 119, 158letrd 9734 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x ) )
1605, 101, 106, 159fsumle 13569 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) )
1615, 105fsumrecl 13512 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  e.  RR )
162 remulcl 9573 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  2  e.  RR )  ->  ( x  x.  2 )  e.  RR )
163146, 29, 162sylancl 662 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( x  x.  2 )  e.  RR )
16483, 163readdcld 9619 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  e.  RR )
16528recnd 9618 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  CC )
166 2cnd 10604 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
1675, 165, 166fsumadd 13517 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) 2 ) )
168 fsumconst 13561 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  2  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 ) )
1695, 43, 168sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 ) )
170138adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
171 flge0nn0 11917 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
172 hashfz1 12381 . . . . . . . . . . . . . . . . 17  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
173170, 171, 1723syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
174173oveq1d 6297 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 )  =  ( ( |_ `  x
)  x.  2 ) )
175169, 174eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( ( |_ `  x )  x.  2 ) )
176175oveq2d 6298 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) 2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( ( |_ `  x )  x.  2 ) ) )
177167, 176eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( ( |_
`  x )  x.  2 ) ) )
178 reflcl 11897 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
179146, 178syl 16 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( |_
`  x )  e.  RR )
18029a1i 11 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  2  e.  RR )
181179, 180remulcld 9620 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  x.  2 )  e.  RR )
182 flle 11900 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
183146, 182syl 16 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( |_
`  x )  <_  x )
184 2pos 10623 . . . . . . . . . . . . . . . . 17  |-  0  <  2
18529, 184pm3.2i 455 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
186185a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 2  e.  RR  /\  0  <  2 ) )
187 lemul1 10390 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  x
)  e.  RR  /\  x  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( |_
`  x )  <_  x 
<->  ( ( |_ `  x )  x.  2 )  <_  ( x  x.  2 ) ) )
188179, 146, 186, 187syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  <_  x  <->  ( ( |_ `  x )  x.  2 )  <_  (
x  x.  2 ) ) )
189183, 188mpbid 210 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  x.  2 )  <_ 
( x  x.  2 ) )
190181, 163, 83, 189leadd2dd 10163 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( ( |_ `  x )  x.  2 ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) ) )
191177, 190eqbrtrd 4467 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) ) )
192161, 164, 23, 191lediv1dd 11306 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  <_  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x ) )
193105recnd 9618 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  CC )
1945, 56, 193, 61fsumdivc 13557 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x ) )
19583recnd 9618 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  CC )
19656, 86mulcld 9612 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( x  x.  2 )  e.  CC )
197 divdir 10226 . . . . . . . . . . . 12  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  CC  /\  (
x  x.  2 )  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) ) )
198195, 196, 55, 197syl3anc 1228 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) ) )
19986, 56, 61divcan3d 10321 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( x  x.  2 )  /  x )  =  2 )
200199oveq2d 6298 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
201198, 200eqtrd 2508 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
202192, 194, 2013brtr3d 4476 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
)  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
203102, 107, 97, 160, 202letrd 9734 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
20498, 102, 97, 103, 203letrd 9734 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
20597leabsd 13202 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  <_  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
20698, 97, 100, 204, 205letrd 9734 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
207206adantrr 716 . . . . 5  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) )  <_ 
( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
20882, 95, 97, 40, 207o1le 13431 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  O(1) )
20922selberglem1 23455 . . . 4  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
210 o1add 13392 . . . 4  |-  ( ( ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1) )  ->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  oF  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  e.  O(1) )
211208, 209, 210sylancl 662 . . 3  |-  ( T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  oF  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  e.  O(1) )
21281, 211eqeltrrd 2556 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1) )
213212trud 1388 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662   _Vcvv 3113    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   ` cfv 5586  (class class class)co 6282    oFcof 6520   Fincfn 7513   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   RR+crp 11216   ...cfz 11668   |_cfl 11891   ^cexp 12129   !cfa 12315   #chash 12367   abscabs 13024    ~~> r crli 13264   O(1)co1 13265   sum_csu 13464   logclog 22667   mmucmu 23093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11960  df-seq 12071  df-exp 12130  df-fac 12316  df-bc 12343  df-hash 12368  df-shft 12857  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-limsup 13250  df-clim 13267  df-rlim 13268  df-o1 13269  df-lo1 13270  df-sum 13465  df-ef 13658  df-e 13659  df-sin 13660  df-cos 13661  df-pi 13663  df-dvds 13841  df-gcd 13997  df-prm 14070  df-pc 14213  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-starv 14563  df-sca 14564  df-vsca 14565  df-ip 14566  df-tset 14567  df-ple 14568  df-ds 14570  df-unif 14571  df-hom 14572  df-cco 14573  df-rest 14671  df-topn 14672  df-0g 14690  df-gsum 14691  df-topgen 14692  df-pt 14693  df-prds 14696  df-xrs 14750  df-qtop 14755  df-imas 14756  df-xps 14758  df-mre 14834  df-mrc 14835  df-acs 14837  df-mnd 15725  df-submnd 15775  df-mulg 15858  df-cntz 16147  df-cmn 16593  df-psmet 18179  df-xmet 18180  df-met 18181  df-bl 18182  df-mopn 18183  df-fbas 18184  df-fg 18185  df-cnfld 18189  df-top 19163  df-bases 19165  df-topon 19166  df-topsp 19167  df-cld 19283  df-ntr 19284  df-cls 19285  df-nei 19362  df-lp 19400  df-perf 19401  df-cn 19491  df-cnp 19492  df-haus 19579  df-cmp 19650  df-tx 19795  df-hmeo 19988  df-fil 20079  df-fm 20171  df-flim 20172  df-flf 20173  df-xms 20555  df-ms 20556  df-tms 20557  df-cncf 21114  df-limc 22002  df-dv 22003  df-log 22669  df-cxp 22670  df-em 23047  df-mu 23099
This theorem is referenced by:  selberglem3  23457  selberg  23458
  Copyright terms: Public domain W3C validator