MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg4r Unicode version

Theorem selberg4r 20719
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.11 of [Shapiro], p. 430. (Contributed by Mario Carneiro, 30-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
selberg4r  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 )
Distinct variable groups:    m, a, n, x    R, m, n, x
Allowed substitution hint:    R( a)

Proof of Theorem selberg4r
StepHypRef Expression
1 elioore 10686 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
21adantl 452 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
3 1rp 10358 . . . . . . . . . . . . 13  |-  1  e.  RR+
43a1i 10 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
54rpred 10390 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
6 eliooord 10710 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
76adantl 452 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
87simpld 445 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
95, 2, 8ltled 8967 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 10425 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
11 pntrval.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1211pntrval 20711 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
1310, 12syl 15 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( R `  x )  =  ( (ψ `  x )  -  x
) )
1413oveq1d 5873 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  -  x
)  x.  ( log `  x ) ) )
15 chpcl 20362 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
162, 15syl 15 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (ψ `  x )  e.  RR )
1716recnd 8861 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (ψ `  x )  e.  CC )
182recnd 8861 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  CC )
1910relogcld 19974 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR )
2019recnd 8861 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
2117, 18, 20subdird 9236 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  -  x )  x.  ( log `  x
) )  =  ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( x  x.  ( log `  x ) ) ) )
2214, 21eqtrd 2315 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) ) )
2310ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  e.  RR+ )
24 elfznn 10819 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2524adantl 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2625nnrpd 10389 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2726adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  RR+ )
2823, 27rpdivcld 10407 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  RR+ )
29 elfznn 10819 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
3029adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
3130nnrpd 10389 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
3228, 31rpdivcld 10407 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  RR+ )
3311pntrval 20711 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  /  n
)  /  m )  e.  RR+  ->  ( R `
 ( ( x  /  n )  /  m ) )  =  ( (ψ `  (
( x  /  n
)  /  m ) )  -  ( ( x  /  n )  /  m ) ) )
3432, 33syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( R `  ( ( x  /  n )  /  m
) )  =  ( (ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) )
3534oveq2d 5874 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) )  =  ( (Λ `  m )  x.  (
(ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) ) )
36 vmacl 20356 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
3730, 36syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  m
)  e.  RR )
3837recnd 8861 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  m
)  e.  CC )
392adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
4039, 25nndivred 9794 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
4140adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  RR )
4241, 30nndivred 9794 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  RR )
43 chpcl 20362 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  /  n
)  /  m )  e.  RR  ->  (ψ `  ( ( x  /  n )  /  m
) )  e.  RR )
4442, 43syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (ψ `  (
( x  /  n
)  /  m ) )  e.  RR )
4544recnd 8861 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (ψ `  (
( x  /  n
)  /  m ) )  e.  CC )
4642recnd 8861 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  CC )
4738, 45, 46subdid 9235 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
(ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) )  =  ( ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
4835, 47eqtrd 2315 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) )  =  ( ( (Λ `  m )  x.  (ψ `  ( (
x  /  n )  /  m ) ) )  -  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )
4948sumeq2dv 12176 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
50 fzfid 11035 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
5137, 44remulcld 8863 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  RR )
5251recnd 8861 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  CC )
5338, 46mulcld 8855 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  CC )
5450, 52, 53fsumsub 12250 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
5549, 54eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
5655oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) ) )
57 vmacl 20356 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
5825, 57syl 15 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
5958recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6050, 51fsumrecl 12207 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  RR )
6160recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  CC )
6250, 53fsumcl 12206 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  CC )
6359, 61, 62subdid 9235 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  (ψ `  ( (
x  /  n )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  =  ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
6456, 63eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) )  =  ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
6564sumeq2dv 12176 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
66 fzfid 11035 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
6758, 60remulcld 8863 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  RR )
6867recnd 8861 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  CC )
6959, 62mulcld 8855 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  CC )
7066, 68, 69fsumsub 12250 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
7165, 70eqtrd 2315 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
7271oveq2d 5874 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
73 2re 9815 . . . . . . . . . . . . 13  |-  2  e.  RR
7473a1i 10 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  e.  RR )
752, 8rplogcld 19980 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
7674, 75rerpdivcld 10417 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
7776recnd 8861 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
7866, 67fsumrecl 12207 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  RR )
7978recnd 8861 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  CC )
8066, 69fsumcl 12206 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  CC )
8177, 79, 80subdid 9235 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
8272, 81eqtrd 2315 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
8322, 82oveq12d 5876 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
x  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) ) )
8416, 19remulcld 8863 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  RR )
8584recnd 8861 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  CC )
8618, 20mulcld 8855 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
8776, 78remulcld 8863 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  e.  RR )
8887recnd 8861 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  e.  CC )
8977, 80mulcld 8855 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  CC )
9085, 86, 88, 89sub4d 9206 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) ) )
9183, 90eqtrd 2315 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) ) )
9291oveq1d 5873 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x ) )
9384, 87resubcld 9211 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  e.  RR )
9493recnd 8861 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  e.  CC )
952, 19remulcld 8863 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR )
9637, 42remulcld 8863 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  RR )
9750, 96fsumrecl 12207 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  RR )
9858, 97remulcld 8863 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  RR )
9966, 98fsumrecl 12207 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  RR )
10076, 99remulcld 8863 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  RR )
10195, 100resubcld 9211 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  e.  RR )
102101recnd 8861 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  e.  CC )
10310rpne0d 10395 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  =/=  0 )
10494, 102, 18, 103divsubdird 9575 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) ) )
10595recnd 8861 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
10699recnd 8861 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  CC )
10777, 106mulcld 8855 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  CC )
108105, 107, 18, 103divsubdird 9575 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  /  x )  =  ( ( ( x  x.  ( log `  x
) )  /  x
)  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  /  x
) ) )
10920, 18, 103divcan3d 9541 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  /  x )  =  ( log `  x
) )
11077, 106, 18, 103divassd 9571 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )  /  x )  =  ( ( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) ) )
11198recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  CC )
11266, 18, 111, 103fsumdivc 12248 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) )
11341recnd 8861 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  CC )
11430nncnd 9762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  CC )
11530nnne0d 9790 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  =/=  0 )
116113, 38, 114, 115div12d 9572 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  x.  ( (Λ `  m
)  /  m ) )  =  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )
11718adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
118117adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  e.  CC )
11925nncnd 9762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
120119adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  CC )
12137, 30nndivred 9794 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  /  m
)  e.  RR )
122121recnd 8861 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  /  m
)  e.  CC )
12325nnne0d 9790 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
124123adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  =/=  0 )
125118, 120, 122, 124div32d 9559 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  x.  ( (Λ `  m
)  /  m ) )  =  ( x  x.  ( ( (Λ `  m )  /  m
)  /  n ) ) )
126116, 125eqtr3d 2317 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  =  ( x  x.  ( ( (Λ `  m )  /  m
)  /  n ) ) )
127126oveq1d 5873 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
)  =  ( ( x  x.  ( ( (Λ `  m )  /  m )  /  n
) )  /  x
) )
12825adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  NN )
129121, 128nndivred 9794 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  /  m )  /  n
)  e.  RR )
130129recnd 8861 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  /  m )  /  n
)  e.  CC )
131103adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  =/=  0 )
132131adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  =/=  0 )
133130, 118, 132divcan3d 9541 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  x.  ( ( (Λ `  m )  /  m )  /  n
) )  /  x
)  =  ( ( (Λ `  m )  /  m )  /  n
) )
134127, 133eqtrd 2315 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
)  =  ( ( (Λ `  m )  /  m )  /  n
) )
135134sumeq2dv 12176 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( (Λ `  m
)  /  m )  /  n ) )
13696recnd 8861 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  CC )
13750, 117, 136, 131fsumdivc 12248 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  /  x )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x ) )
13850, 119, 122, 123fsumdivc 12248 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  /  n )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  /  m )  /  n ) )
139135, 137, 1383eqtr4d 2325 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  /  x )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) )
140139oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) ) )
14197recnd 8861 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  CC )
14259, 141, 117, 131divassd 9571 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  /  x )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x ) ) )
14350, 121fsumrecl 12207 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  RR )
144143recnd 8861 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  CC )
14559, 119, 144, 123div32d 9559 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) ) )
146140, 142, 1453eqtr4d 2325 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  /  x )  =  ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
147146sumeq2dv 12176 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
148112, 147eqtrd 2315 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
149148oveq2d 5874 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
150110, 149eqtrd 2315 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )  /  x )  =  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
151109, 150oveq12d 5876 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  /  x
)  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  /  x
) )  =  ( ( log `  x
)  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) ) )
152108, 151eqtrd 2315 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  /  x )  =  ( ( log `  x
)  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) ) )
153152oveq2d 5874 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( log `  x )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) ) ) ) )
15494, 18, 103divcld 9536 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  e.  CC )
15558, 25nndivred 9794 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
156155, 143remulcld 8863 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  e.  RR )
15766, 156fsumrecl 12207 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  RR )
15876, 157remulcld 8863 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  e.  RR )
159158recnd 8861 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  e.  CC )
160154, 20, 159subsub2d 9186 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( log `  x )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) ) ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
161153, 160eqtrd 2315 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
162104, 161eqtrd 2315 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
16392, 162eqtrd 2315 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
164163mpteq2dva 4106 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) ) )
16593, 10rerpdivcld 10417 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  e.  RR )
166158, 19resubcld 9211 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) )  e.  RR )
167 selberg4 20710 . . . . 5  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
) )  e.  O
( 1 )
168167a1i 10 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
) )  e.  O
( 1 ) )
169 2cn 9816 . . . . . . . . 9  |-  2  e.  CC
170169a1i 10 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  e.  CC )
171157, 75rerpdivcld 10417 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  RR )
172171recnd 8861 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  CC )
17319rehalfcld 9958 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
174173recnd 8861 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
175170, 172, 174subdid 9235 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  =  ( ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x
)  /  2 ) ) ) )
176157recnd 8861 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  CC )
17775rpne0d 10395 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  =/=  0 )
178170, 20, 176, 177div32d 9559 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) ) ) )
179178eqcomd 2288 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
180 2ne0 9829 . . . . . . . . . 10  |-  2  =/=  0
181180a1i 10 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  =/=  0 )
18220, 170, 181divcan2d 9538 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( ( log `  x )  /  2 ) )  =  ( log `  x
) )
183179, 182oveq12d 5876 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x
)  /  2 ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )
184175, 183eqtrd 2315 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )
185184mpteq2dva 4106 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) ) )
186171, 173resubcld 9211 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  e.  RR )
187 ioossre 10712 . . . . . . 7  |-  ( 1 (,)  +oo )  C_  RR
188169a1i 10 . . . . . . 7  |-  (  T. 
->  2  e.  CC )
189 o1const 12093 . . . . . . 7  |-  ( ( ( 1 (,)  +oo )  C_  RR  /\  2  e.  CC )  ->  (
x  e.  ( 1 (,)  +oo )  |->  2 )  e.  O ( 1 ) )
190187, 188, 189sylancr 644 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  2 )  e.  O
( 1 ) )
191 2vmadivsum 20690 . . . . . . 7  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O
( 1 )
192191a1i 10 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O
( 1 ) )
19374, 186, 190, 192o1mul2 12098 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) ) )  e.  O ( 1 ) )
194185, 193eqeltrrd 2358 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )  e.  O
( 1 ) )
195165, 166, 168, 194o1add2 12097 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )  e.  O
( 1 ) )
196164, 195eqeltrd 2357 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 ) )
197196trud 1314 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    T. wtru 1307    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    +oocpnf 8864    < clt 8867    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   RR+crp 10354   (,)cioo 10656   ...cfz 10782   |_cfl 10924   O ( 1 )co1 11960   sum_csu 12158   logclog 19912  Λcvma 20329  ψcchp 20330
This theorem is referenced by:  selberg34r  20720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453