MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3r Structured version   Unicode version

Theorem selberg3r 23498
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of [Shapiro], p. 429. (Contributed by Mario Carneiro, 30-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
selberg3r  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x
) )  e.  O(1)
Distinct variable groups:    n, a, x    R, n, x
Allowed substitution hint:    R( a)

Proof of Theorem selberg3r
StepHypRef Expression
1 elioore 11558 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
21adantl 466 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
3 1rp 11223 . . . . . . . . . . . . 13  |-  1  e.  RR+
43a1i 11 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
5 1red 9610 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
6 eliooord 11583 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
76adantl 466 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
87simpld 459 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
95, 2, 8ltled 9731 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 11290 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
1110relogcld 22752 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
1211recnd 9621 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
13122timesd 10780 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( log `  x ) )  =  ( ( log `  x
)  +  ( log `  x ) ) )
1413oveq2d 6299 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( log `  x
)  +  ( log `  x ) ) ) )
15 chpcl 23142 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
162, 15syl 16 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (ψ `  x )  e.  RR )
1716, 11remulcld 9623 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  RR )
18 2re 10604 . . . . . . . . . . . . . 14  |-  2  e.  RR
1918a1i 11 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR )
202, 8rplogcld 22758 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2119, 20rerpdivcld 11282 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
22 fzfid 12050 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
23 elfznn 11713 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2423adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
25 vmacl 23136 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
2624, 25syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
272adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
2827, 24nndivred 10583 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
29 chpcl 23142 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
3028, 29syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
3126, 30remulcld 9623 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
3224nnrpd 11254 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
3332relogcld 22752 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
3431, 33remulcld 9623 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3522, 34fsumrecl 13518 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3621, 35remulcld 9623 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  e.  RR )
3717, 36readdcld 9622 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
3837, 10rerpdivcld 11282 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
3938recnd 9621 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  CC )
4039, 12, 12subsub4d 9960 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( log `  x
)  +  ( log `  x ) ) ) )
4114, 40eqtr4d 2511 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) ) )
4241oveq1d 6298 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) )  =  ( ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) ) )
4339, 12subcld 9929 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  e.  CC )
44 2cn 10605 . . . . . . . . 9  |-  2  e.  CC
4544a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
4620rpne0d 11260 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
4745, 12, 46divcld 10319 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
4826, 24nndivred 10583 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
4948, 33remulcld 9623 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  n ) )  e.  RR )
5022, 49fsumrecl 13518 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  e.  RR )
5150recnd 9621 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  e.  CC )
5247, 51mulcld 9615 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  e.  CC )
5343, 52, 12nnncan2d 9964 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) )  =  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )
54 pntrval.r . . . . . . . . . . . . 13  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
5554pntrf 23492 . . . . . . . . . . . 12  |-  R : RR+
--> RR
5655ffvelrni 6019 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
5710, 56syl 16 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  RR )
5857recnd 9621 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  CC )
5958, 12mulcld 9615 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  e.  CC )
6036recnd 9621 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  e.  CC )
6159, 60addcld 9614 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  CC )
622recnd 9621 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  CC )
6362, 52mulcld 9615 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  e.  CC )
6410rpne0d 11260 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  =/=  0 )
6561, 63, 62, 64divsubdird 10358 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )  /  x )  =  ( ( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  /  x
) ) )
6659, 60, 63addsubassd 9949 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )  =  ( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) ) ) )
6735recnd 9621 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
6862, 51mulcld 9615 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  e.  CC )
6947, 67, 68subdid 10011 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )  =  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) ) )
7049recnd 9621 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  n ) )  e.  CC )
7122, 62, 70fsummulc2 13561 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
7271oveq2d 6299 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( x  x.  ( ( (Λ `  n )  /  n
)  x.  ( log `  n ) ) ) ) )
7334recnd 9621 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
7462adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
7574, 70mulcld 9615 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  e.  CC )
7622, 73, 75fsumsub 13565 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( x  x.  ( ( (Λ `  n )  /  n
)  x.  ( log `  n ) ) ) ) )
7772, 76eqtr4d 2511 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )
7826recnd 9621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
7930recnd 9621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  CC )
8033recnd 9621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
8178, 79, 80mul32d 9788 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  (ψ `  ( x  /  n ) ) ) )
8224nncnd 10551 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
8324nnne0d 10579 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
8478, 80, 82, 83div23d 10356 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( log `  n
) )  /  n
)  =  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )
8584oveq2d 6299 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( (Λ `  n
)  x.  ( log `  n ) )  /  n ) )  =  ( x  x.  (
( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
8678, 80mulcld 9615 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
8774, 86, 82, 83div12d 10355 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( (Λ `  n
)  x.  ( log `  n ) )  /  n ) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  ( x  /  n
) ) )
8885, 87eqtr3d 2510 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  ( x  /  n
) ) )
8981, 88oveq12d 6301 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  ( ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  (ψ `  ( x  /  n ) ) )  -  ( ( (Λ `  n )  x.  ( log `  n ) )  x.  ( x  /  n ) ) ) )
9010adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
9190, 32rpdivcld 11272 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
9254pntrval 23491 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  =  ( (ψ `  (
x  /  n ) )  -  ( x  /  n ) ) )
9391, 92syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  =  ( (ψ `  ( x  /  n ) )  -  ( x  /  n
) ) )
9493oveq2d 6299 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( log `  n
) )  x.  ( R `  ( x  /  n ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  x.  ( (ψ `  ( x  /  n
) )  -  (
x  /  n ) ) ) )
9528recnd 9621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
9686, 79, 95subdid 10011 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( log `  n
) )  x.  (
(ψ `  ( x  /  n ) )  -  ( x  /  n
) ) )  =  ( ( ( (Λ `  n )  x.  ( log `  n ) )  x.  (ψ `  (
x  /  n ) ) )  -  (
( (Λ `  n )  x.  ( log `  n
) )  x.  (
x  /  n ) ) ) )
9794, 96eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( log `  n
) )  x.  ( R `  ( x  /  n ) ) )  =  ( ( ( (Λ `  n )  x.  ( log `  n
) )  x.  (ψ `  ( x  /  n
) ) )  -  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  ( x  /  n
) ) ) )
9889, 97eqtr4d 2511 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  ( R `  (
x  /  n ) ) ) )
9955ffvelrni 6019 . . . . . . . . . . . . . . . . 17  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
10091, 99syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
101100recnd 9621 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
10278, 101, 80mul32d 9788 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  x.  ( R `  ( x  /  n
) ) ) )
10398, 102eqtr4d 2511 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )
104103sumeq2dv 13487 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) )
10577, 104eqtrd 2508 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )
106105oveq2d 6299 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
10747, 62, 51mul12d 9787 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( x  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )
108107oveq2d 6299 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )  =  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  ( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) ) )
10969, 106, 1083eqtr3rd 2517 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
110109oveq2d 6299 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  +  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  ( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) ) )  =  ( ( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) ) ) )
11166, 110eqtrd 2508 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )  =  ( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
112111oveq1d 6298 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )  /  x )  =  ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )
11354pntrval 23491 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
11410, 113syl 16 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  =  ( (ψ `  x )  -  x
) )
115114oveq1d 6298 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  -  x
)  x.  ( log `  x ) ) )
11616recnd 9621 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (ψ `  x )  e.  CC )
117116, 62, 12subdird 10012 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  -  x )  x.  ( log `  x
) )  =  ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( x  x.  ( log `  x ) ) ) )
118115, 117eqtrd 2508 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) ) )
119118oveq1d 6298 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
x  x.  ( log `  x ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
12017recnd 9621 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  CC )
12162, 12mulcld 9615 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
122120, 60, 121addsubd 9950 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
123119, 122eqtr4d 2511 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) ) )
124123oveq1d 6298 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) )  /  x ) )
12537recnd 9621 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  CC )
126125, 121, 62, 64divsubdird 10358 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( x  x.  ( log `  x
) )  /  x
) ) )
12712, 62, 64divcan3d 10324 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( x  x.  ( log `  x ) )  /  x )  =  ( log `  x
) )
128127oveq2d 6299 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( x  x.  ( log `  x
) )  /  x
) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) ) )
129126, 128eqtrd 2508 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) ) )
130124, 129eqtrd 2508 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) ) )
13152, 62, 64divcan3d 10324 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
132130, 131oveq12d 6301 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  /  x
) )  =  ( ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )
13365, 112, 1323eqtr3rd 2517 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  ( ( ( ( R `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x
) )
13442, 53, 1333eqtrrd 2513 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) ) )
135134mpteq2dva 4533 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) ) ) )
13619, 11remulcld 9623 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( log `  x ) )  e.  RR )
13738, 136resubcld 9986 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  RR )
13821, 50remulcld 9623 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  e.  RR )
139138, 11resubcld 9986 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) )  e.  RR )
140 selberg3 23488 . . . . 5  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
141140a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1) )
14219recnd 9621 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
14350, 20rerpdivcld 11282 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
144143recnd 9621 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  CC )
14511rehalfcld 10784 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
146145recnd 9621 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
147142, 144, 146subdid 10011 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x )  /  2
) ) ) )
148142, 12, 51, 46div32d 10342 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
149148eqcomd 2475 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) )  /  ( log `  x
) ) )  =  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
150 2ne0 10627 . . . . . . . . . 10  |-  2  =/=  0
151150a1i 11 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  =/=  0 )
15212, 142, 151divcan2d 10321 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( ( log `  x )  /  2 ) )  =  ( log `  x
) )
153149, 152oveq12d 6301 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x )  /  2
) ) )  =  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) )
154147, 153eqtrd 2508 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) )
155154mpteq2dva 4533 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) ) )
156143, 145resubcld 9986 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  RR )
157 ioossre 11585 . . . . . . . 8  |-  ( 1 (,) +oo )  C_  RR
158 o1const 13404 . . . . . . . 8  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  2  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  2 )  e.  O(1) )
159157, 44, 158mp2an 672 . . . . . . 7  |-  ( x  e.  ( 1 (,) +oo )  |->  2 )  e.  O(1)
160159a1i 11 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  2 )  e.  O(1) )
161 vmalogdivsum 23468 . . . . . . 7  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
162161a1i 11 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) )
16319, 156, 160, 162o1mul2 13409 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O(1) )
164155, 163eqeltrrd 2556 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) )  e.  O(1) )
165137, 139, 141, 164o1sub2 13410 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) ) )  e.  O(1) )
166135, 165eqeltrd 2555 . 2  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  O(1) )
167166trud 1388 1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x
) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    + caddc 9494    x. cmul 9496   +oocpnf 9624    < clt 9627    - cmin 9804    / cdiv 10205   NNcn 10535   2c2 10584   RR+crp 11219   (,)cioo 11528   ...cfz 11671   |_cfl 11894   O(1)co1 13271   sum_csu 13470   logclog 22686  Λcvma 23109  ψcchp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-fac 12321  df-bc 12348  df-hash 12373  df-shft 12862  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-o1 13275  df-lo1 13276  df-sum 13471  df-ef 13664  df-e 13665  df-sin 13666  df-cos 13667  df-pi 13669  df-dvds 13847  df-gcd 14003  df-prm 14076  df-pc 14219  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-haus 19598  df-cmp 19669  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-limc 22021  df-dv 22022  df-log 22688  df-cxp 22689  df-em 23066  df-cht 23114  df-vma 23115  df-chp 23116  df-ppi 23117  df-mu 23118
This theorem is referenced by:  selberg34r  23500
  Copyright terms: Public domain W3C validator