MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3r Structured version   Unicode version

Theorem selberg3r 22798
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of [Shapiro], p. 429. (Contributed by Mario Carneiro, 30-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
selberg3r  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x
) )  e.  O(1)
Distinct variable groups:    n, a, x    R, n, x
Allowed substitution hint:    R( a)

Proof of Theorem selberg3r
StepHypRef Expression
1 elioore 11322 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
21adantl 466 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
3 1rp 10987 . . . . . . . . . . . . 13  |-  1  e.  RR+
43a1i 11 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
5 1red 9393 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
6 eliooord 11347 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
76adantl 466 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
87simpld 459 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
95, 2, 8ltled 9514 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 11054 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
1110relogcld 22052 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
1211recnd 9404 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
13122timesd 10559 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( log `  x ) )  =  ( ( log `  x
)  +  ( log `  x ) ) )
1413oveq2d 6102 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( log `  x
)  +  ( log `  x ) ) ) )
15 chpcl 22442 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
162, 15syl 16 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (ψ `  x )  e.  RR )
1716, 11remulcld 9406 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  RR )
18 2re 10383 . . . . . . . . . . . . . 14  |-  2  e.  RR
1918a1i 11 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR )
202, 8rplogcld 22058 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2119, 20rerpdivcld 11046 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
22 fzfid 11787 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
23 elfznn 11470 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2423adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
25 vmacl 22436 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
2624, 25syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
272adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
2827, 24nndivred 10362 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
29 chpcl 22442 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
3028, 29syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
3126, 30remulcld 9406 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
3224nnrpd 11018 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
3332relogcld 22052 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
3431, 33remulcld 9406 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3522, 34fsumrecl 13203 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3621, 35remulcld 9406 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  e.  RR )
3717, 36readdcld 9405 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
3837, 10rerpdivcld 11046 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
3938recnd 9404 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  CC )
4039, 12, 12subsub4d 9742 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( log `  x
)  +  ( log `  x ) ) ) )
4114, 40eqtr4d 2473 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) ) )
4241oveq1d 6101 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) )  =  ( ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) ) )
4339, 12subcld 9711 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  e.  CC )
44 2cn 10384 . . . . . . . . 9  |-  2  e.  CC
4544a1i 11 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
4620rpne0d 11024 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
4745, 12, 46divcld 10099 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
4826, 24nndivred 10362 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
4948, 33remulcld 9406 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  n ) )  e.  RR )
5022, 49fsumrecl 13203 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  e.  RR )
5150recnd 9404 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  e.  CC )
5247, 51mulcld 9398 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  e.  CC )
5343, 52, 12nnncan2d 9746 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) )  =  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )
54 pntrval.r . . . . . . . . . . . . 13  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
5554pntrf 22792 . . . . . . . . . . . 12  |-  R : RR+
--> RR
5655ffvelrni 5837 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
5710, 56syl 16 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  RR )
5857recnd 9404 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  CC )
5958, 12mulcld 9398 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  e.  CC )
6036recnd 9404 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  e.  CC )
6159, 60addcld 9397 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  CC )
622recnd 9404 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  CC )
6362, 52mulcld 9398 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  e.  CC )
6410rpne0d 11024 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  =/=  0 )
6561, 63, 62, 64divsubdird 10138 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )  /  x )  =  ( ( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  /  x
) ) )
6659, 60, 63addsubassd 9731 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )  =  ( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) ) ) )
6735recnd 9404 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
6862, 51mulcld 9398 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  e.  CC )
6947, 67, 68subdid 9792 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )  =  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) ) )
7049recnd 9404 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  n ) )  e.  CC )
7122, 62, 70fsummulc2 13243 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
7271oveq2d 6102 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( x  x.  ( ( (Λ `  n )  /  n
)  x.  ( log `  n ) ) ) ) )
7334recnd 9404 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
7462adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
7574, 70mulcld 9398 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  e.  CC )
7622, 73, 75fsumsub 13247 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( x  x.  ( ( (Λ `  n )  /  n
)  x.  ( log `  n ) ) ) ) )
7772, 76eqtr4d 2473 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )
7826recnd 9404 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
7930recnd 9404 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  CC )
8033recnd 9404 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
8178, 79, 80mul32d 9571 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  (ψ `  ( x  /  n ) ) ) )
8224nncnd 10330 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
8324nnne0d 10358 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
8478, 80, 82, 83div23d 10136 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( log `  n
) )  /  n
)  =  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )
8584oveq2d 6102 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( (Λ `  n
)  x.  ( log `  n ) )  /  n ) )  =  ( x  x.  (
( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
8678, 80mulcld 9398 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
8774, 86, 82, 83div12d 10135 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( (Λ `  n
)  x.  ( log `  n ) )  /  n ) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  ( x  /  n
) ) )
8885, 87eqtr3d 2472 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  ( x  /  n
) ) )
8981, 88oveq12d 6104 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  ( ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  (ψ `  ( x  /  n ) ) )  -  ( ( (Λ `  n )  x.  ( log `  n ) )  x.  ( x  /  n ) ) ) )
9010adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
9190, 32rpdivcld 11036 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
9254pntrval 22791 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  =  ( (ψ `  (
x  /  n ) )  -  ( x  /  n ) ) )
9391, 92syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  =  ( (ψ `  ( x  /  n ) )  -  ( x  /  n
) ) )
9493oveq2d 6102 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( log `  n
) )  x.  ( R `  ( x  /  n ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  x.  ( (ψ `  ( x  /  n
) )  -  (
x  /  n ) ) ) )
9528recnd 9404 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
9686, 79, 95subdid 9792 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( log `  n
) )  x.  (
(ψ `  ( x  /  n ) )  -  ( x  /  n
) ) )  =  ( ( ( (Λ `  n )  x.  ( log `  n ) )  x.  (ψ `  (
x  /  n ) ) )  -  (
( (Λ `  n )  x.  ( log `  n
) )  x.  (
x  /  n ) ) ) )
9794, 96eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( log `  n
) )  x.  ( R `  ( x  /  n ) ) )  =  ( ( ( (Λ `  n )  x.  ( log `  n
) )  x.  (ψ `  ( x  /  n
) ) )  -  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  ( x  /  n
) ) ) )
9889, 97eqtr4d 2473 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  x.  ( R `  (
x  /  n ) ) ) )
9955ffvelrni 5837 . . . . . . . . . . . . . . . . 17  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
10091, 99syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
101100recnd 9404 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
10278, 101, 80mul32d 9571 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  x.  ( R `  ( x  /  n
) ) ) )
10398, 102eqtr4d 2473 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )
104103sumeq2dv 13172 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) )
10577, 104eqtrd 2470 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )
106105oveq2d 6102 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  -  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
10747, 62, 51mul12d 9570 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( x  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )
108107oveq2d 6102 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )  =  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  ( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) ) )
10969, 106, 1083eqtr3rd 2479 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
110109oveq2d 6102 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  +  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  ( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) ) )  =  ( ( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) ) ) )
11166, 110eqtrd 2470 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )  =  ( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
112111oveq1d 6101 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) ) )  /  x )  =  ( ( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )
11354pntrval 22791 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
11410, 113syl 16 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  =  ( (ψ `  x )  -  x
) )
115114oveq1d 6101 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  -  x
)  x.  ( log `  x ) ) )
11616recnd 9404 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (ψ `  x )  e.  CC )
117116, 62, 12subdird 9793 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  -  x )  x.  ( log `  x
) )  =  ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( x  x.  ( log `  x ) ) ) )
118115, 117eqtrd 2470 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) ) )
119118oveq1d 6101 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
x  x.  ( log `  x ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
12017recnd 9404 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  CC )
12162, 12mulcld 9398 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
122120, 60, 121addsubd 9732 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
123119, 122eqtr4d 2473 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) ) )
124123oveq1d 6101 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) )  /  x ) )
12537recnd 9404 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  CC )
126125, 121, 62, 64divsubdird 10138 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( x  x.  ( log `  x
) )  /  x
) ) )
12712, 62, 64divcan3d 10104 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( x  x.  ( log `  x ) )  /  x )  =  ( log `  x
) )
128127oveq2d 6102 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( x  x.  ( log `  x
) )  /  x
) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) ) )
129126, 128eqtrd 2470 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  -  ( x  x.  ( log `  x
) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) ) )
130124, 129eqtrd 2470 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) ) )
13152, 62, 64divcan3d 10104 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( x  x.  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
132130, 131oveq12d 6104 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( ( x  x.  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )  /  x
) )  =  ( ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) ) )
13365, 112, 1323eqtr3rd 2479 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( log `  x ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )  =  ( ( ( ( R `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x
) )
13442, 53, 1333eqtrrd 2475 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) ) )
135134mpteq2dva 4373 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) ) ) )
13619, 11remulcld 9406 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( log `  x ) )  e.  RR )
13738, 136resubcld 9768 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  RR )
13821, 50remulcld 9406 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  e.  RR )
139138, 11resubcld 9768 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) )  e.  RR )
140 selberg3 22788 . . . . 5  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
141140a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1) )
14219recnd 9404 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
14350, 20rerpdivcld 11046 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
144143recnd 9404 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  CC )
14511rehalfcld 10563 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
146145recnd 9404 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
147142, 144, 146subdid 9792 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x )  /  2
) ) ) )
148142, 12, 51, 46div32d 10122 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
149148eqcomd 2443 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) )  /  ( log `  x
) ) )  =  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
150 2ne0 10406 . . . . . . . . . 10  |-  2  =/=  0
151150a1i 11 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  =/=  0 )
15212, 142, 151divcan2d 10101 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( ( log `  x )  /  2 ) )  =  ( log `  x
) )
153149, 152oveq12d 6104 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x )  /  2
) ) )  =  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) )
154147, 153eqtrd 2470 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) )
155154mpteq2dva 4373 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) ) )
156143, 145resubcld 9768 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  RR )
157 ioossre 11349 . . . . . . . 8  |-  ( 1 (,) +oo )  C_  RR
158 o1const 13089 . . . . . . . 8  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  2  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  2 )  e.  O(1) )
159157, 44, 158mp2an 672 . . . . . . 7  |-  ( x  e.  ( 1 (,) +oo )  |->  2 )  e.  O(1)
160159a1i 11 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  2 )  e.  O(1) )
161 vmalogdivsum 22768 . . . . . . 7  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
162161a1i 11 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) )
16319, 156, 160, 162o1mul2 13094 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O(1) )
164155, 163eqeltrrd 2513 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  -  ( log `  x ) ) )  e.  O(1) )
165137, 139, 141, 164o1sub2 13095 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  -  ( log `  x ) ) ) )  e.  O(1) )
166135, 165eqeltrd 2512 . 2  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  O(1) )
167166trud 1378 1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x
) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369   T. wtru 1370    e. wcel 1756    =/= wne 2601    C_ wss 3323   class class class wbr 4287    e. cmpt 4345   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279   +oocpnf 9407    < clt 9410    - cmin 9587    / cdiv 9985   NNcn 10314   2c2 10363   RR+crp 10983   (,)cioo 11292   ...cfz 11429   |_cfl 11632   O(1)co1 12956   sum_csu 13155   logclog 21986  Λcvma 22409  ψcchp 22410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-disj 4258  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-o1 12960  df-lo1 12961  df-sum 13156  df-ef 13345  df-e 13346  df-sin 13347  df-cos 13348  df-pi 13350  df-dvds 13528  df-gcd 13683  df-prm 13756  df-pc 13896  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-cmp 18970  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322  df-log 21988  df-cxp 21989  df-em 22366  df-cht 22414  df-vma 22415  df-chp 22416  df-ppi 22417  df-mu 22418
This theorem is referenced by:  selberg34r  22800
  Copyright terms: Public domain W3C validator